The movement of a solid in an incompressible perfect fluid as a geodesic flow
HTML articles powered by AMS MathViewer
- by Olivier Glass and Franck Sueur
- Proc. Amer. Math. Soc. 140 (2012), 2155-2168
- DOI: https://doi.org/10.1090/S0002-9939-2011-11219-X
- Published electronically: October 4, 2011
- PDF | Request permission
Abstract:
The motion of a rigid body immersed in an incompressible perfect fluid which occupies a three-dimensional bounded domain has recently been studied under its PDE formulation. In particular, classical solutions have been shown to exist locally in time. In this paper, following the celebrated result of Arnold concerning the case of a perfect incompressible fluid alone, we prove that these classical solutions are the geodesics of a Riemannian manifold of infinite dimension, in the sense that they are the critical points of an action, which is the integral over time of the total kinetic energy of the fluid-rigid body system.References
- V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 1, 319–361 (French). MR 202082, DOI 10.5802/aif.233
- Yann Brenier, Topics on hydrodynamics and volume preserving maps, Handbook of mathematical fluid dynamics, Vol. II, North-Holland, Amsterdam, 2003, pp. 55–86. MR 1983589, DOI 10.1016/S1874-5792(03)80004-6
- Jean-Yves Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995), 177 (French, with French summary). MR 1340046
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- O. Glass, F. Sueur, T. Takahashi. Smoothness of the motion of a rigid body immersed in an incompressible perfect fluid, preprint, 2010, arXiv:1003.4172, to appear in Ann. Sci. École Norm. Sup.
- Jean Gabriel Houot, Jorge San Martin, and Marius Tucsnak, Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid, J. Funct. Anal. 259 (2010), no. 11, 2856–2885. MR 2719277, DOI 10.1016/j.jfa.2010.07.006
- Atsushi Inoue and Minoru Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 2, 303–319. MR 481649
- Jaime Ortega, Lionel Rosier, and Takéo Takahashi, On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. H. Poincaré C Anal. Non Linéaire 24 (2007), no. 1, 139–165 (English, with English and French summaries). MR 2286562, DOI 10.1016/j.anihpc.2005.12.004
- Jaime H. Ortega, Lionel Rosier, and Takéo Takahashi, Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, M2AN Math. Model. Numer. Anal. 39 (2005), no. 1, 79–108. MR 2136201, DOI 10.1051/m2an:2005002
- Carole Rosier and Lionel Rosier, Smooth solutions for the motion of a ball in an incompressible perfect fluid, J. Funct. Anal. 256 (2009), no. 5, 1618–1641. MR 2490232, DOI 10.1016/j.jfa.2008.10.024
- Joris Vankerschaver, Eva Kanso, and Jerrold Marsden, The geometry and dynamics of interacting rigid bodies and point vortices, J. Geom. Mech. 1 (2009), no. 2, 223–266. MR 2525759, DOI 10.3934/jgm.2009.1.223
- J. Vankerschaver, E. Kanso, and J. E. Marsden, The dynamics of a rigid body in potential flow with circulation, Regul. Chaotic Dyn. 15 (2010), no. 4-5, 606–629. MR 2679768, DOI 10.1134/S1560354710040143
- V. A. Vladimirov, K. I. Ilin. On the Arnold stability of a solid in a plane steady flow of an ideal incompressible fluid, Theor. Comput. Fluid Dyn. 10 (1998), 425–437.
- V. A. Vladimirov and K. I. Ilin, On the stability of the dynamical system “rigid body + inviscid fluid”, J. Fluid Mech. 386 (1999), 43–75. MR 1696733, DOI 10.1017/S0022112099004267
Bibliographic Information
- Olivier Glass
- Affiliation: Ceremade, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
- Email: glass@ceremade.dauphine.fr
- Franck Sueur
- Affiliation: Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie - Paris 6, 4 Place Jussieu, 75005 Paris, France
- Email: fsueur@ann.jussieu.fr
- Received by editor(s): February 7, 2011
- Published electronically: October 4, 2011
- Additional Notes: The authors were partially supported by the Agence Nationale de la Recherche, Project CISIFS, grant ANR-09-BLAN-0213-02.
- Communicated by: Walter Craig
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2155-2168
- MSC (2010): Primary 76B99, 74F10
- DOI: https://doi.org/10.1090/S0002-9939-2011-11219-X
- MathSciNet review: 2888201