Ideal games and Ramsey sets
HTML articles powered by AMS MathViewer
- by Carlos Di Prisco, José G. Mijares and Carlos Uzcátegui
- Proc. Amer. Math. Soc. 140 (2012), 2255-2265
- DOI: https://doi.org/10.1090/S0002-9939-2011-11090-6
- Published electronically: November 1, 2011
- PDF | Request permission
Abstract:
It is shown that Matet’s characterization of the Ramsey property relative to a selective co-ideal $\mathcal {H}$, in terms of games of Kastanas, still holds if we consider semiselectivity instead of selectivity. Moreover, we prove that a co-ideal $\mathcal {H}$ is semiselective if and only if Matet’s game-theoretic characterization of the $\mathcal {H}$-Ramsey property holds. This lifts Kastanas’s characterization of the classical Ramsey property to its optimal setting, from the point of view of the local Ramsey theory, and gives a game-theoretic counterpart to a theorem of Farah, asserting that a co-ideal $\mathcal {H}$ is semiselective if and only if the family of $\mathcal {H}$-Ramsey subsets of $\mathbb {N}^{[\infty ]}$ coincides with the family of those sets having the abstract $\mathcal {H}$-Baire property. Finally, we show that under suitable assumptions, for every semiselective co-ideal $\mathcal H$ all sets of real numbers are $\mathcal H$-Ramsey.References
- Todd Eisworth, Selective ultrafilters and $\omega \to (\omega )^\omega$, Proc. Amer. Math. Soc. 127 (1999), no. 10, 3067–3071. MR 1600136, DOI 10.1090/S0002-9939-99-04835-2
- Erik Ellentuck, A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163–165. MR 349393, DOI 10.2307/2272356
- Ilijas Farah, Semiselective coideals, Mathematika 45 (1998), no. 1, 79–103. MR 1644345, DOI 10.1112/S0025579300014054
- Fred Galvin and Karel Prikry, Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973), 193–198. MR 337630, DOI 10.2307/2272055
- Thomas Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded. MR 1940513
- Ilias G. Kastanas, On the Ramsey property for sets of reals, J. Symbolic Logic 48 (1983), no. 4, 1035–1045 (1984). MR 727792, DOI 10.2307/2273667
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Alain Louveau, Une méthode topologique pour l’étude de la propriété de Ramsey, Israel J. Math. 23 (1976), no. 2, 97–116 (French, with English summary). MR 411971, DOI 10.1007/BF02756789
- Pierre Matet, Happy families and completely Ramsey sets, Arch. Math. Logic 32 (1993), no. 3, 151–171. MR 1201647, DOI 10.1007/BF01375549
- A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), no. 1, 59–111. MR 491197, DOI 10.1016/0003-4843(77)90006-7
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- Jack Silver, Every analytic set is Ramsey, J. Symbolic Logic 35 (1970), 60–64. MR 332480, DOI 10.2307/2271156
- Robert M. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1–56. MR 265151, DOI 10.2307/1970696
- Stevo Todorcevic, Introduction to Ramsey spaces, Annals of Mathematics Studies, vol. 174, Princeton University Press, Princeton, NJ, 2010. MR 2603812, DOI 10.1515/9781400835409
Bibliographic Information
- Carlos Di Prisco
- Affiliation: Instituto Venezolano de Investigaciones Científicas y Escuela de Matemática, Universidad Central de Venezuela, Caracas, Venezuela
- Email: cdiprisc@ivic.gob.ve
- José G. Mijares
- Affiliation: Instituto Venezolano de Investigaciones Científicas y Escuela de Matemática, Universidad Central de Venezuela, Caracas, Venezuela
- Address at time of publication: Departamento de Matematicas, Pontificia Universidad Javeriana, Bogota, Colombia
- Email: jmijares@ivic.gob.ve, jose.mijares@ciens.ucv.ve, jmijares@javeriana.edu.co
- Carlos Uzcátegui
- Affiliation: Departamento de Matemáticas, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
- Email: uzca@ula.ve
- Received by editor(s): September 19, 2010
- Received by editor(s) in revised form: February 19, 2011
- Published electronically: November 1, 2011
- Communicated by: Julia Knight
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2255-2265
- MSC (2010): Primary 05D10; Secondary 03E02
- DOI: https://doi.org/10.1090/S0002-9939-2011-11090-6
- MathSciNet review: 2898689