Graphs with automorphism groups admitting composition factors of bounded rank
HTML articles powered by AMS MathViewer
- by Cheryl E. Praeger, Laszló Pyber, Pablo Spiga and Endre Szabó
- Proc. Amer. Math. Soc. 140 (2012), 2307-2318
- DOI: https://doi.org/10.1090/S0002-9939-2011-11100-6
- Published electronically: November 23, 2011
- PDF | Request permission
Abstract:
We prove a $1978$ conjecture of Richard Weiss in the case of groups with composition factors of bounded rank. Namely, we prove that there exists a function $g: \mathbb {N} \times \mathbb {N} \to \mathbb {N}$ such that, for $\Gamma$ a connected $G$-vertex-transitive, $G$-locally primitive graph of valency at most $d$, if $G$ has no alternating groups of degree greater than $r$ as sections, then a vertex stabiliser in $G$ has size at most $g(r,d)$.References
- L. Babai, P. J. Cameron, and P. P. Pálfy, On the orders of primitive groups with restricted nonabelian composition factors, J. Algebra 79 (1982), no. 1, 161–168. MR 679977, DOI 10.1016/0021-8693(82)90323-4
- Jean Bourgain, Alex Gamburd, and Peter Sarnak, Affine linear sieve, expanders, and sum-product, Invent. Math. 179 (2010), no. 3, 559–644. MR 2587341, DOI 10.1007/s00222-009-0225-3
- J. Bourgain and P. P. Varjú, Expansion on $SL_d (Z/q Z)$, $q$ arbitrary, to appear in Inventiones Math., DOI:10.1007/x00222-011-0345-4Online First™.
- E. Breuillard, B. Green, T. Tao, Approximate subgroups of linear groups, Geometric and Functional Analysis 21, no. 4, 774–819, DOI:10.1007/s00039-011-0122-y.
- Emmanuel Breuillard, Ben Green, and Terence Tao, Suzuki groups as expanders, Groups Geom. Dyn. 5 (2011), no. 2, 281–299. MR 2782174, DOI 10.4171/GGD/128
- E. Breuillard, B. J. Green, R. Guralnick and T. C. Tao, Expansion in finite simple groups of Lie type, in preparation.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- P. J. Cameron, C. E. Praeger, J. Saxl, and G. M. Seitz, On the Sims conjecture and distance transitive graphs, Bull. London Math. Soc. 15 (1983), no. 5, 499–506. MR 705530, DOI 10.1112/blms/15.5.499
- Marston D. Conder, Cai Heng Li, and Cheryl E. Praeger, On the Weiss conjecture for finite locally primitive graphs, Proc. Edinburgh Math. Soc. (2) 43 (2000), no. 1, 129–138. MR 1744704, DOI 10.1017/S0013091500020745
- A. A. Ivanov and S. V. Shpectorov, Amalgams determined by locally projective actions, Nagoya Math. J. 176 (2004), 19–98. MR 2108123, DOI 10.1017/S0027763000008989
- W. M. Kantor, E. M. Luks, Computing in quotient groups, STOC ‘90 Proceedings of the twenty-second ACM symposium on theory of computing (1990), 524–534.
- Alexander Lubotzky and Dan Segal, Subgroup growth, Progress in Mathematics, vol. 212, Birkhäuser Verlag, Basel, 2003. MR 1978431, DOI 10.1007/978-3-0348-8965-0
- Cheryl E. Praeger, Imprimitive symmetric graphs, Ars Combin. 19 (1985), no. A, 149–163. MR 790928
- Cheryl E. Praeger, Finite quasiprimitive graphs, Surveys in combinatorics, 1997 (London), London Math. Soc. Lecture Note Ser., vol. 241, Cambridge Univ. Press, Cambridge, 1997, pp. 65–85. MR 1477745, DOI 10.1017/CBO9780511662119.005
- Cheryl E. Praeger, Finite transitive permutation groups and bipartite vertex-transitive graphs, Illinois J. Math. 47 (2003), no. 1-2, 461–475. Special issue in honor of Reinhold Baer (1902–1979). MR 2031334
- C. E. Praeger, P. Spiga and G. Verret, Bounding the size of the vertex-stabiliser in vertex-transitive graphs, preprint: arXiv:1102.1543.
- L. Pyber, E. Szabó, Growth in finite simple groups of Lie type of bounded rank, preprint: arXiv:1005.1858
- Gert Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964), 426–438. MR 175815, DOI 10.1007/BF01304186
- Charles C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967), 76–86. MR 204509, DOI 10.1007/BF01117534
- P. Spiga, Two local conditions on the vertex stabiliser of arc-transitive graphs and their effect on the Sylow subgroups, to appear in Journal of Group Theory, DOI:10.1515/JGT.2011.097.
- John G. Thompson, Bounds for orders of maximal subgroups, J. Algebra 14 (1970), 135–138. MR 252500, DOI 10.1016/0021-8693(70)90117-1
- V. I. Trofimov, Graphs with projective suborbits. Exceptional cases of characteristic 2. IV, Izv. Ross. Akad. Nauk Ser. Mat. 67 (2003), no. 6, 193–222 (Russian, with Russian summary); English transl., Izv. Math. 67 (2003), no. 6, 1267–1294. MR 2032095, DOI 10.1070/IM2003v067n06ABEH000464
- V. I. Trofimov and R. M. Weiss, The group $E_6(q)$ and graphs with a locally linear group of automorphisms, Math. Proc. Cambridge Philos. Soc. 148 (2010), no. 1, 1–32. MR 2575369, DOI 10.1017/S0305004109990223
- R. Weiss, $s$-transitive graphs, Algebraic methods in graph theory, Vol. I, II (Szeged, 1978) Colloq. Math. Soc. János Bolyai, vol. 25, North-Holland, Amsterdam-New York, 1981, pp. 827–847. MR 642075
- Richard Weiss, Symmetric graphs with projective subconstituents, Proc. Amer. Math. Soc. 72 (1978), no. 1, 213–217. MR 524349, DOI 10.1090/S0002-9939-1978-0524349-5
- Richard Weiss, Symmetrische Graphen mit auflösbaren Stabilisatoren, J. Algebra 53 (1978), no. 2, 412–415 (German). MR 502640, DOI 10.1016/0021-8693(78)90287-9
- Richard Weiss, An application of $p$-factorization methods to symmetric graphs, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 43–48. MR 510398, DOI 10.1017/S030500410005547X
Bibliographic Information
- Cheryl E. Praeger
- Affiliation: Centre for Mathematics of Symmetry and Computation, School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
- MR Author ID: 141715
- ORCID: 0000-0002-0881-7336
- Email: praeger@maths.uwa.edu.au
- Laszló Pyber
- Affiliation: Rényi Institute of Mathematics, Hungarian Academy of Sciences, P. O. Box 127, H-1364 Budapest, Hungary
- Email: pyber@renyi.hu
- Pablo Spiga
- Affiliation: Centre for Mathematics of Symmetry and Computation, School of Mathematics and Statistics, The University of Western Australia, Crawley, WA 6009, Australia
- MR Author ID: 764459
- Email: spiga@maths.uwa.edu.au
- Endre Szabó
- Affiliation: Rényi Institute of Mathematics, Hungarian Academy of Sciences, P. O. Box 127, H-1364 Budapest, Hungary
- Email: endre@renyi.hu
- Received by editor(s): December 16, 2010
- Received by editor(s) in revised form: January 12, 2011, and February 28, 2011
- Published electronically: November 23, 2011
- Additional Notes: The first author is supported by the ARC Federation Fellowship Project FF0776186.
The second author is supported in part by OTKA 78439 and 72523.
The third author is supported by the University of Western Australia as part of the Federation Fellowship project.
The fourth author is supported in part by OTKA 81203 and 72523. - Communicated by: Jonathan I. Hall
- © Copyright 2011 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 2307-2318
- MSC (2000): Primary 20B25
- DOI: https://doi.org/10.1090/S0002-9939-2011-11100-6
- MathSciNet review: 2898694
Dedicated: For the 60th birthday of L. Babai