## The exceptional set in Vojta’s conjecture for algebraic points of bounded degree

HTML articles powered by AMS MathViewer

- by Aaron Levin PDF
- Proc. Amer. Math. Soc.
**140**(2012), 2267-2277 Request permission

## Abstract:

We study the dependence on various parameters of the exceptional set in Vojta’s conjecture. In particular, by making use of certain elliptic surfaces, we answer in the negative the often-raised question of whether Vojta’s conjecture holds when extended to all algebraic points (that is, if the conjecture holds without fixing a bound on the degree of the algebraic points).## References

- P. Autissier, A. Chambert-Loir, and C. Gasbarri,
*On the canonical degrees of curves in varieties of general type*, arXiv:1003.3804v1 [math.AG] (preprint). - Enrico Bombieri and Walter Gubler,
*Heights in Diophantine geometry*, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR**2216774**, DOI 10.1017/CBO9780511542879 - William Cherry,
*The Nevanlinna error term for coverings, generically surjective case*, Proceedings Symposium on Value Distribution Theory in Several Complex Variables (Notre Dame, IN, 1990) Notre Dame Math. Lectures, vol. 12, Univ. Notre Dame Press, Notre Dame, IN, 1992, pp. 37–53. MR**1243017** - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0 - Marc Hindry and Joseph H. Silverman,
*Diophantine geometry*, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR**1745599**, DOI 10.1007/978-1-4612-1210-2 - Shoshichi Kobayashi and Takushiro Ochiai,
*Mappings into compact manifolds with negative first Chern class*, J. Math. Soc. Japan**23**(1971), 137–148. MR**288316**, DOI 10.2969/jmsj/02310137 - K. Kodaira,
*On the structure of compact complex analytic surfaces. I*, Amer. J. Math.**86**(1964), 751–798. MR**187255**, DOI 10.2307/2373157 - Serge Lang,
*The error term in Nevanlinna theory. II*, Bull. Amer. Math. Soc. (N.S.)**22**(1990), no. 1, 115–125. MR**1003864**, DOI 10.1090/S0273-0979-1990-15857-4 - Serge Lang,
*Number theory. III*, Encyclopaedia of Mathematical Sciences, vol. 60, Springer-Verlag, Berlin, 1991. Diophantine geometry. MR**1112552**, DOI 10.1007/978-3-642-58227-1 - Serge Lang and William Cherry,
*Topics in Nevanlinna theory*, Lecture Notes in Mathematics, vol. 1433, Springer-Verlag, Berlin, 1990. With an appendix by Zhuan Ye. MR**1069755**, DOI 10.1007/BFb0093846 - Aaron Levin, David McKinnon, and Jörg Winkelmann,
*On the error terms and exceptional sets in conjectural second main theorems*, Q. J. Math.**59**(2008), no. 4, 487–498. MR**2461270**, DOI 10.1093/qmath/ham052 - K. Mahler,
*An inequality for the discriminant of a polynomial*, Michigan Math. J.**11**(1964), 257–262. MR**166188**, DOI 10.1307/mmj/1028999140 - M. McQuillan,
*Old and new techniques in function field arithmetic*, preprint. - Rick Miranda,
*The basic theory of elliptic surfaces*, Dottorato di Ricerca in Matematica. [Doctorate in Mathematical Research], ETS Editrice, Pisa, 1989. MR**1078016** - Yoichi Miyaoka,
*The orbibundle Miyaoka-Yau-Sakai inequality and an effective Bogomolov-McQuillan theorem*, Publ. Res. Inst. Math. Sci.**44**(2008), no. 2, 403–417. MR**2426352**, DOI 10.2977/prims/1210167331 - Tetsuji Shioda,
*On elliptic modular surfaces*, J. Math. Soc. Japan**24**(1972), 20–59. MR**429918**, DOI 10.2969/jmsj/02410020 - Tetsuji Shioda,
*The $abc$-theorem, Davenport’s inequality and elliptic surfaces*, Proc. Japan Acad. Ser. A Math. Sci.**84**(2008), no. 4, 51–56. MR**2409500** - Xiangjun Song and Thomas J. Tucker,
*Dirichlet’s theorem, Vojta’s inequality, and Vojta’s conjecture*, Compositio Math.**116**(1999), no. 2, 219–238. MR**1686848**, DOI 10.1023/A:1000948001301 - C. L. Stewart and R. Tijdeman,
*On the Oesterlé-Masser conjecture*, Monatsh. Math.**102**(1986), no. 3, 251–257. MR**863221**, DOI 10.1007/BF01294603 - Machiel van Frankenhuysen,
*A lower bound in the $abc$ conjecture*, J. Number Theory**82**(2000), no. 1, 91–95. MR**1755155**, DOI 10.1006/jnth.1999.2484 - Machiel van Frankenhuijsen,
*$ABC$ implies the radicalized Vojta height inequality for curves*, J. Number Theory**127**(2007), no. 2, 292–300. MR**2362438**, DOI 10.1016/j.jnt.2006.03.010 - Paul Vojta,
*Diophantine approximations and value distribution theory*, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR**883451**, DOI 10.1007/BFb0072989 - Paul Vojta,
*A refinement of Schmidt’s subspace theorem*, Amer. J. Math.**111**(1989), no. 3, 489–518. MR**1002010**, DOI 10.2307/2374670 - Paul Vojta,
*A more general $abc$ conjecture*, Internat. Math. Res. Notices**21**(1998), 1103–1116. MR**1663215**, DOI 10.1155/S1073792898000658 - Katsutoshi Yamanoi,
*The second main theorem for small functions and related problems*, Acta Math.**192**(2004), no. 2, 225–294. MR**2096455**, DOI 10.1007/BF02392741

## Additional Information

**Aaron Levin**- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- MR Author ID: 775832
- Email: adlevin@math.msu.edu
- Received by editor(s): November 2, 2010
- Received by editor(s) in revised form: February 20, 2011
- Published electronically: November 1, 2011
- Additional Notes: This research was partially supported by NSF grant DMS-0635607
- Communicated by: Matthew A. Papanikolas
- © Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**140**(2012), 2267-2277 - MSC (2010): Primary 11J97; Secondary 11J25
- DOI: https://doi.org/10.1090/S0002-9939-2011-11147-X
- MathSciNet review: 2898690