Nonlinear perturbations of linear elliptic systems at resonance
HTML articles powered by AMS MathViewer
- by Philip Korman
- Proc. Amer. Math. Soc. 140 (2012), 2447-2451
- DOI: https://doi.org/10.1090/S0002-9939-2011-11288-7
- Published electronically: November 21, 2011
- PDF | Request permission
Abstract:
We consider a semilinear system \begin{align*} \Delta u&+ \lambda v+b_1(v)=f(x),\;\; x \in \Omega ,\quad \;\;\; u=0 \mbox {\ \ \ for $x \in \partial \Omega $} ,\\ \Delta v&+\frac {\lambda ^2 _1}{\lambda } u+b_2(u) =g(x),\;\; x \in \Omega ,\quad v=0 \mbox {\ \ \ for $x \in \partial \Omega $}, \end{align*} whose linear part is at resonance. Here $\lambda >0$ and the functions $b_1(t)$ and $b_2(t)$ are bounded and continuous. Assuming that $tb_i(t)>0$ for all $t \in R$, $i=1,2$, and that the first harmonics of $f(x)$ and $g(x)$ lie on a certain straight line, we prove the existence of solutions. This extends a similar result for one equation, due to D.G. de Figueiredo and W.-M. Ni.References
- A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. (4) 93 (1972), 231–246. MR 320844, DOI 10.1007/BF02412022
- Antonio Ambrosetti and Giovanni Prodi, A primer of nonlinear analysis, Cambridge Studies in Advanced Mathematics, vol. 34, Cambridge University Press, Cambridge, 1993. MR 1225101
- M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1974/75), 837–846. MR 377274, DOI 10.1512/iumj.1975.24.24066
- Djairo G. de Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of differential equations: stationary partial differential equations. Vol. V, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 1–48. MR 2497896, DOI 10.1016/S1874-5733(08)80008-3
- Djairo Guedes de Figueiredo and Wei Ming Ni, Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition, Nonlinear Anal. 3 (1979), no. 5, 629–634. MR 541873, DOI 10.1016/0362-546X(79)90091-9
- Philip Korman, Curves of equiharmonic solutions, and ranges of nonlinear equations, Adv. Differential Equations 14 (2009), no. 9-10, 963–984. MR 2548284
- E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1969/1970), 609–623. MR 0267269
- Louis Nirenberg, Topics in nonlinear functional analysis, Courant Lecture Notes in Mathematics, vol. 6, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001. Chapter 6 by E. Zehnder; Notes by R. A. Artino; Revised reprint of the 1974 original. MR 1850453, DOI 10.1090/cln/006
- Bernhard Ruf, Superlinear elliptic equations and systems, Handbook of differential equations: stationary partial differential equations. Vol. V, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 211–276. MR 2497908, DOI 10.1016/S1874-5733(08)80010-1
Bibliographic Information
- Philip Korman
- Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0025
- MR Author ID: 200737
- Email: kormanp@math.uc.edu
- Received by editor(s): February 25, 2011
- Published electronically: November 21, 2011
- Communicated by: Walter Craig
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2447-2451
- MSC (2010): Primary 35J60
- DOI: https://doi.org/10.1090/S0002-9939-2011-11288-7
- MathSciNet review: 2898707