Weighted $L^p$ boundedness of Carleson type maximal operators
HTML articles powered by AMS MathViewer
- by Yong Ding and Honghai Liu
- Proc. Amer. Math. Soc. 140 (2012), 2739-2751
- DOI: https://doi.org/10.1090/S0002-9939-2011-11110-9
- Published electronically: December 8, 2011
- PDF | Request permission
Abstract:
In 2001, E. M. Stein and S. Wainger gave the $L^p$ boundedness of the Carleson type maximal operator $\mathcal {T}^\ast$, which is defined by \[ \mathcal {T}^\ast f(x)=\sup _\lambda \bigg |\int _{{\mathbb R}^n}e^{iP_\lambda (y)}K(y)f(x-y)dy\bigg |.\] In this paper, the authors show that if $K$ is a homogeneous kernel, i.e. $K(y)=\Omega (y’)|y|^{-n}$, then Stein-Wainger’s result still holds on the weighted $L^p$ spaces when $\Omega$ satisfies only an $L^q$-Dini condition for some $1<q\le \infty$.References
- A. P. Calderón, Mary Weiss, and A. Zygmund, On the existence of singular integrals, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 56–73. MR 0338709
- Lennart Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1966), 135–157. MR 199631, DOI 10.1007/BF02392815
- L. Colzani, Hardy spaces on spheres, Ph.D. Thesis, Washington University, St. Louis, 1982.
- Yong Ding and Honghai Liu, $L^p$ boundedness of Carleson type maximal operators with nonsmooth kernels, Tohoku Math. J. (2) 63 (2011), no. 2, 255–267. MR 2812453, DOI 10.2748/tmj/1309952088
- Javier Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. Amer. Math. Soc. 336 (1993), no. 2, 869–880. MR 1089418, DOI 10.1090/S0002-9947-1993-1089418-5
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Richard A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Proc. Conf., Edwardsville, Ill., 1967) Southern Illinois Univ. Press, Carbondale, Ill., 1968, pp. 235–255. MR 0238019
- Richard A. Hunt and Wo Sang Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc. 80 (1974), 274–277. MR 338655, DOI 10.1090/S0002-9904-1974-13458-0
- Douglas S. Kurtz and Richard L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343–362. MR 542885, DOI 10.1090/S0002-9947-1979-0542885-8
- Elena Prestini and Per Sjölin, A Littlewood-Paley inequality for the Carleson operator, J. Fourier Anal. Appl. 6 (2000), no. 5, 457–466. MR 1781088, DOI 10.1007/BF02511540
- Per Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Mat. 9 (1971), 65–90. MR 336222, DOI 10.1007/BF02383638
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Stephen Wainger, Oscillatory integrals related to Carleson’s theorem, Math. Res. Lett. 8 (2001), no. 5-6, 789–800. MR 1879821, DOI 10.4310/MRL.2001.v8.n6.a9
- E. M. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159–172. MR 92943, DOI 10.1090/S0002-9947-1958-0092943-6
Bibliographic Information
- Yong Ding
- Affiliation: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems (BNU), Beijing Normal University, Ministry of Education of China, Beijing 100875, People’s Republic of China
- MR Author ID: 213750
- Email: dingy@bnu.edu.cn
- Honghai Liu
- Affiliation: School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, People’s Republic of China
- Email: hhliu@hpu.edu.cn
- Received by editor(s): May 29, 2010
- Received by editor(s) in revised form: March 6, 2011
- Published electronically: December 8, 2011
- Additional Notes: The first author was supported by the NSF of China (Grant 10931001), SRFDP of China (Grant 20090003110018) and Program for Changjiang Scholars and Innovative Research Team in University.
- Communicated by: Richard Rochberg
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2739-2751
- MSC (2010): Primary 42B20, 42B25; Secondary 42B99
- DOI: https://doi.org/10.1090/S0002-9939-2011-11110-9
- MathSciNet review: 2910762