Furstenberg sets for a fractal set of directions
HTML articles powered by AMS MathViewer
- by Ursula Molter and Ezequiel Rela
- Proc. Amer. Math. Soc. 140 (2012), 2753-2765
- DOI: https://doi.org/10.1090/S0002-9939-2011-11111-0
- Published electronically: December 1, 2011
- PDF | Request permission
Abstract:
In this paper we study the behavior of the size of Furstenberg sets with respect to the size of the set of directions defining it. For any pair $\alpha ,\beta \in (0,1]$, we will say that a set $E\subset \mathbb {R}^2$ is an $F_{\alpha \beta }$-set if there is a subset $L$ of the unit circle of Hausdorff dimension at least $\beta$ and, for each direction $e$ in $L$, there is a line segment $\ell _e$ in the direction of $e$ such that the Hausdorff dimension of the set $E\cap \ell _e$ is equal to or greater than $\alpha$. The problem is considered in the wider scenario of generalized Hausdorff measures, giving estimates on the appropriate dimension functions for each class of Furstenberg sets. As a corollary of our main results, we obtain that $\dim (E)\ge \max \left \{\alpha +\frac {\beta }{2} ; 2\alpha +\beta -1\right \}$ for any $E\in F_{\alpha \beta }$. In particular we are able to extend previously known results to the “endpoint” $\alpha =0$ case.References
- Richard Delaware, Sets whose Hausdorff measure equals method I outer measure, Real Anal. Exchange 27 (2001/02), no. 2, 535–562. MR 1922667, DOI 10.14321/realanalexch.27.2.0535
- Richard Delaware, Every set of finite Hausdorff measure is a countable union of sets whose Hausdorff measure and content coincide, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2537–2542. MR 1974652, DOI 10.1090/S0002-9939-02-06825-9
- Kenneth Falconer, Fractal geometry, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR 2118797, DOI 10.1002/0470013850
- Felix Hausdorff, Dimension und äußeres Maß, Math. Ann. 79 (1918), no. 1-2, 157–179 (German). MR 1511917, DOI 10.1007/BF01457179
- Nets Hawk Katz and Terence Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149–187. MR 1856956
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Themis Mitsis, Norm estimates for the Kakeya maximal function with respect to general measures, Real Anal. Exchange 27 (2001/02), no. 2, 563–572. MR 1922668, DOI 10.14321/realanalexch.27.2.0563
- Ursula Molter and Ezequiel Rela. Small Furstenberg sets. Preprint.
- Ursula Molter and Ezequiel Rela, Improving dimension estimates for Furstenberg-type sets, Adv. Math. 223 (2010), no. 2, 672–688. MR 2565545, DOI 10.1016/j.aim.2009.08.019
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Terence Tao. Finite field analogues of the Erdös, Falconer, and Furstenburg problems. http://ftp.math.ucla.edu/~tao/preprints/Expository/finite.dvi.
- Thomas Wolff, Decay of circular means of Fourier transforms of measures, Internat. Math. Res. Notices 10 (1999), 547–567. MR 1692851, DOI 10.1155/S1073792899000288
- Thomas H. Wolff, Lectures on harmonic analysis, University Lecture Series, vol. 29, American Mathematical Society, Providence, RI, 2003. With a foreword by Charles Fefferman and a preface by Izabella Łaba; Edited by Łaba and Carol Shubin. MR 2003254, DOI 10.1090/ulect/029
Bibliographic Information
- Ursula Molter
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Capital Federal, Argentina – and – IMAS-UBA/CONICET, Argentina
- MR Author ID: 126270
- Email: umolter@dm.uba.ar
- Ezequiel Rela
- Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, 1428 Capital Federal, Argentina – and – IMAS-UBA/CONICET, Argentina
- MR Author ID: 887397
- Email: erela@dm.uba.ar
- Received by editor(s): September 2, 2010
- Received by editor(s) in revised form: March 6, 2011
- Published electronically: December 1, 2011
- Additional Notes: This research is partially supported by grants ANPCyT PICT2006-00177, CONICET PIP 11220080100398 and UBACyT X149
- Communicated by: Michael T. Lacey
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2753-2765
- MSC (2010): Primary 28A78, 28A80
- DOI: https://doi.org/10.1090/S0002-9939-2011-11111-0
- MathSciNet review: 2910763