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Abstract. In this work, we consider Lie algebras L containing a subalge-
bra isomorphic to sl3 and such that L decomposes as a module for that sl3

subalgebra into copies of the adjoint module, the natural three-dimensional
module and its dual, and the trivial one-dimensional module. We determine
the multiplication in L and establish connections with structurable algebras
by exploiting symmetry relative to the symmetric group S4.

1. Introduction

The Lie algebra gln+k of (n+k)× (n+k) matrices over a field F of characteristic
0 under the commutator product [x, y] = xy − yx, when viewed as a module for
the copy of gln in its northwest corner, decomposes into k copies of the natural
n-dimensional gln-module V = F

n, k copies of the dual module V∗ = Hom(V,F), a
copy of the Lie algebra glk in its southeast corner, and the copy of gln:

gln+k = gln ⊕ V⊕k ⊕ (V∗)⊕k ⊕ glk.

As a result, we may write

gln+k
∼= gln ⊕ (V⊗ B)⊕ (V∗ ⊗ C)⊕ glk,

where B = C = F
k. This second expression reflects the decomposition of gln+k as

a module for gln ⊕ glk. When restricted to sln, the gln-modules V and V∗ remain
irreducible, while gln decomposes into a copy of the adjoint module and a trivial
sln-module spanned by the identity matrix gln = sln ⊕ FIn. Thus, we have the sln

decomposition of gln+k,

(1.1) gln+k
∼= sln ⊕ (V ⊗ B)⊕ (V∗ ⊗ C)⊕

(
glk ⊕ FIn

)
,

where glk ⊕ FIn is the sum of the trivial sln-modules in gln+k. Decompositions
such as (1.1) also arise in the study of direct limits of simple Lie algebras and give
insight into their structure.
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Indeed, suppose we have a chain of homomorphisms,

(1.2) g
(1) ϕ1→ g

(2) ϕ2→ · · · → g
(i) ϕi→ g

(i+1) → · · · ,
where g(i) = sl(V(i)). Assume that sl(V) is a fixed term in the chain for some
V = V(j), and dimV = n. We identify sl(V) with sln by choosing a basis for V and
assume V(i) = V⊕ki ⊕F

⊕zi as a module for sln for i ≥ j. Then the limit Lie algebra
L = lim

−→
g(i) admits a decomposition relative to sln,

(1.3) L ∼= (sln ⊗ A)⊕ (V⊗ B)⊕ (V∗ ⊗ C)⊕ s,

where s is the sum of the trivial sln-modules (see [3, Sec. 5]). Bahturin and Benkart
in [3, Sec. 4] study Lie algebras having such a decomposition and describe the
multiplication in L and the possibilities for A,B,C, s when dimV ≥ 4. When
dimV = 2, then V∗ is isomorphic to V as a module for sl2 = sl(V). In this case, a
Lie algebra having a decomposition, L = (sl2 ⊗ A)⊕ (V ⊗ B)⊕ s, is graded by the
root system BC1, and its structure has been described in [4].

In this paper, we investigate the missing case when dimV = 3, which presents
very distinctive features. For direct limit Lie algebras of the type considered above,
we could, of course, choose a larger space V(j) having dimV(j) ≥ 4 and apply
the results of [3]. However, there are many examples of Lie algebras which admit
very interesting decompositions as in (1.3) for n = 3. The exceptional simple Lie
algebras provide examples of this phenomenon.

Example 1.1. Each exceptional simple Lie algebra L over an algebraically closed
field of characteristic 0 has an automorphism ψ of order 3 that corresponds to
a certain node in the Dynkin diagram of the associated affine Lie algebra. The
node is marked with a “3” in [10, Table Aff 1]. Removing that node gives the
Dynkin diagram of a finite-dimensional semisimple Lie algebra sl3 ⊕ s, which is
the subalgebra of fixed points of the automorphism ψ. The Lie algebra s is the
centralizer of sl3 in L; hence, it is the sum of trivial sl3-modules under the adjoint
action. In the table below we display the Lie algebra s:

(1.4) L G2 F4 E6 E7 E8

s 0 sl3 sl3 ⊕ sl3 sl6 E6

For the Lie algebra G2 we have the well-known decomposition (see [9, Prop. 3])

G2
∼= sl3 ⊕ V ⊕ V∗

relative to sl3 (where sl3 corresponds to the long roots of G2 and V = F
3). This

decomposition can be viewed as the decomposition into eigenspaces relative to ψ,
where V corresponds to the eigenvalue ω (a primitive cube root of 1), V∗ to the
eigenvalue ω2, and sl3 to the eigenvalue 1.

For the other exceptional Lie algebras,

(1.5) L ∼= sl3 ⊕ (V ⊗ B)⊕ (V∗ ⊗ C)⊕ s,

where B and C can be identified with H3(C), the algebra of 3×3 hermitian matrices
over a composition algebra C under the product h ◦ h′ = 1/2(hh′ + h′h). Thus,
elements of B have the form

h =

⎡
⎣ α a b

ā β c
b̄ c̄ γ

⎤
⎦ ,
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where α, β, γ ∈ F, a, b, c ∈ C, and “ ¯ ” is the standard involution in C. The
composition algebra C is displayed in the table below, where K is the algebra F×F,
Q the algebra of quaternions, and O the algebra of octonions:

(1.6) L F4 E6 E7 E8

C F K Q O

The algebra s can be identified with the structure Lie algebra of B = H3(C), s =
Der(B)⊕ LB0

, consisting of the derivations and multiplication maps Lh(h
′) = h ◦ h′

for h ∈ B0 (the matrices in B of trace 0). Here V ⊗ B is the ω-eigenspace of ψ,
V∗ ⊗ C the ω2-eigenspace, and sl3 ⊕ s the 1-eigenspace.

For example, when C = O, it is well known that B = H3(O) is the 27-dimensional
exceptional simple Jordan algebra, and its structure algebra s is a simple Lie algebra
of type E6 (see for example, [11, Chap. IV, Sec. 4]). As a module for E6, B is
irreducible, and relative to a certain Cartan subalgebra, it has as highest weight
the first fundamental weight. The module C is an irreducible E6-module (the dual
module of B) which has as highest weight the last fundamental weight. Thus,

E8 = sl3 ⊕ (V⊗ B)⊕ (V∗ ⊗ C)⊕ E6.

Reading right to left, we see the decomposition of E8 as a module for the subalgebra
of type E6, and reading left to right, its decomposition as an sl3-module. �

Recently, Lie algebras with a decomposition (1.5) have been considered by
Faulkner [8, Lem. 22] in connection with his classification of structurable superal-
gebras of classical type. (Structurable algebras, which were introduced and studied
in [1], form a certain variety of algebras generalizing associative algebras with in-
volution and Jordan algebras.)

In this work, we examine Lie algebras L such that L has a subalgebra sl3 and
such that L admits a decomposition as in (1.3) into copies of sl3, V = F

3, V∗, and
trivial modules relative to the action of sl3. Applying results in [3] and [5], we
determine that A is an alternative algebra, B is a left A-module, and C is a right
A-module, and we describe s and the multiplication in L.

Using the fact that V can be given the structure of a module for the sym-
metric group S4, we obtain an action of S4 by automorphisms on L. The elements
τ1 = (1 2)(3 4) and τ2 = (1 4)(2 3) generate a normal subgroup of S4 which is a Klein
4-subgroup. Results of Elduque and Okubo [7] enable us to deduce that L0 =
{X ∈ L | τ1X = X, τ2X = −X} is a structurable algebra under a certain multi-
plication. We identify the structurable algebra L0 with the space of 2× 2 matrices

A =

[
A C
B A

]

under a suitable multiplication. When L is the exceptional Lie algebra E8, then

A =
[

F C
B F

]
where B = C = H3(O). This is a simple structurable algebra (see [1,

Secs. 8 and 9]).

2. Lie algebras with prescribed sl3 decomposition

Let L be a Lie algebra over a field F of characteristic 	= 2, 3 (this assumption
on the underlying field will be kept throughout) which contains a subalgebra iso-
morphic to sl(V), for a vector space V of dimension 3, so that L decomposes, as
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a module for sl(V) into a direct sum of copies of the adjoint module, the natural
module V, its dual V∗, and the trivial one-dimensional module. Thus, we write as
in (1.3):

(2.1) L =
(
sl(V)⊗ A

)
⊕
(
V ⊗ B

)
⊕
(
V∗ ⊗ C

)
⊕ s

for suitable vector spaces A,B,C, and for a Lie subalgebra s, which is the subalgebra
of elements of L annihilated by the elements in sl(V). The vector space A contains
a distinguished element 1 ∈ A such that sl(V)⊗ 1 is the subalgebra isomorphic to
sl(V) we started with.

Fix a nonzero linear map det :
∧3 V → F. This determines another such form

det :
∧3 V∗ → F such that det(f1 ∧ f2 ∧ f3) det(v1 ∧ v2 ∧ v3) = det

(
fi(vj)

)
for any f1, f2, f3 ∈ V∗ and v1, v2, v3 ∈ V. (The symbol “det” denotes the usual

determinant.) This allows us to identify
∧2

V with V∗: u1 ∧ u2 ↔ det(u1 ∧ u2 ∧ )

and, in the same vein,
∧2 V∗ with V.

The invariance of the bracket in L relative to the subalgebra sl(V) gives equations
as in [3, (19)]:

[x⊗ a, y ⊗ a′] = [x, y]⊗ 1

2
a ◦ a′ + x ◦ y ⊗ 1

2
[a, a′] + (x|y)Da,a′ ,

[x⊗ a, u⊗ b] = xu⊗ ab,

[v∗ ⊗ c, x⊗ a] = v∗x⊗ ca,

[u⊗ b, v∗ ⊗ c] =
(
uv∗ − 1

3
(v∗u)I3

)
⊗ T (b, c) +

1

3
(v∗u)Db,c,

[u1 ⊗ b1, u2 ⊗ b2] = (u1 ∧ u2)⊗ (b1 × b2),

[v∗1 ⊗ c1, v
∗
2 ⊗ c2] = (v∗1 ∧ v∗2)⊗ (c1 × c2),

[d, x⊗ a] = x⊗ da,

[d, u⊗ b] = u⊗ db,

[d, v∗ ⊗ c] = v∗ ⊗ dc,

(2.2)

for any x, y ∈ sl(V), u, u1, u2 ∈ V, v∗, v∗1 , v
∗
2 ∈ V∗, d ∈ s, a, a′ ∈ A, b, b1, b2 ∈ B, and

c, c1, c2 ∈ C, and for bilinear maps:

A× A → A : (a, a′) �→ a ◦ a′ commutative,

A× A → A : (a, a′) �→ [a, a′] anticommutative,

A× A → s, (a, a′) �→ Da,a′ skew-symmetric,

A× B → B : (a, b) �→ ab,

C× A → C : (c, a) �→ ca,

B× C → A : (b, c) �→ T (b, c),

B× C → s : (b, c) �→ Db,c,

B× B → C : (b1, b2) �→ b1 × b2 symmetric,

C× C → B : (c1, c2) �→ c1 × c2 symmetric,

(2.3)
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and representations s → gl(A), gl(B), gl(C), whose action is denoted by da, db, and
dc for d ∈ s and a ∈ A, b ∈ B and c ∈ C, where, as in [3, (17)],

x ◦ y = xy + yx− 2

3
tr(xy)I3,

(x|y) = 1

3
tr(xy),

(2.4)

for x, y ∈ sl(V), and I3 denotes the identity map. The difference with [3, (19)] lies
in the appearance of the symmetric maps b1× b2 and c1× c2 when V has dimension
3. This slight difference has a huge impact.

The distinguished element 1 ∈ A satisfies 1 ◦ a = a, [1, a] = 0, D1,a = 0, 1b = b,
c1 = c, and d1 = 0 for any a ∈ A, b ∈ B, c ∈ C and d ∈ s.

Theorem 2.1. Let L be a vector space as in (2.1) and define an anticommutative
bracket in L by (2.2) for bilinear maps as in (2.3). Then L is a Lie algebra if and
only if the following conditions are satisfied:

(0) s is a Lie subalgebra of L, A, B, C are modules for s relative to the given
actions, and the bilinear maps in (2.3) are s-invariant.

(1) A is an alternative algebra relative to the multiplication

aa′ =
1

2
a ◦ a′ + 1

2
[a, a′],

and the map A×A → A : (a, a′) �→ Da,a′ satisfies the conditions∑
cyclic

Da1,a2a3
= 0,

Da1,a2
a3 = [[a1, a2], a3] + 3

(
(a1a3)a2 − a1(a3a2)

)
,

for any a1, a2, a3 ∈ A.
(2) For any a1, a2 ∈ A, b ∈ B and c ∈ C,

a1(a2b) = (a1a2)b,

(ca1)a2 = c(a1a2),

so that B (respectively C) is a left associative module (resp. right associative
module) for A, and

Da1,a2
b = [a1, a2]b,

Da1,a2
c = c[a2, a1].

(3) For any a ∈ A, b ∈ B and c ∈ C,

aT (b, c) = T (ab, c), T (b, c)a = T (b, ca),

Da,T (b,c) = Dab,c −Db,ca,

Db,ca = [T (b, c), a].

(4) For any a ∈ A, b1, b2 ∈ B and c1, c2 ∈ C,

(b1 × b2)a = (ab1)× b2 = b1 × (ab2),

a(c1 × c2) = (c1a)× c2 = c1 × (c2a).

(5) Db,b×b = 0 for any b ∈ B and Dc×c,c = 0 for any c ∈ C. In addition, the
trilinear maps B×B×B → B : (b1, b2, b3) �→ T (b1, b2× b3) and C×C×C →
C : (c1, c2, c3) �→ T (c1 × c2, c3) are symmetric.
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(6) For any b, b1, b2 ∈ B and c, c1, c2 ∈ C,

(b1 × b2)× c = −1

3
T (b1, c)b2 +

1

3
Db1,cb2 − T (b2, c)b1,

b× (c1 × c2) = −c2T (b, c1)−
1

3
c1T (b, c2)−

1

3
Db,c2c1.

Proof. If L is a Lie algebra under the bracket defined in (2.2), then it is clear that
s is a Lie subalgebra and all the conditions in item (0) are satisfied. Moreover,(
sl(V)⊗A)⊕ s is a Lie subalgebra, and the arguments in [5, Sec. 3] show that A is
an alternative algebra, and the conditions in item (1) are satisfied.

The arguments in Propositions 4.3 and 4.4 and equations (25) and (27) in [3]
work here and give the conditions in item (2). (Note that there is a minus sign
missing in [3, (27)].)

Now, equations (30)–(33) in [3] establish the identitites in (3). The Jacobi iden-
tity applied to elements x⊗ a, u1 ⊗ b1 and u2 ⊗ b2, for x ∈ sl(V), u1, u2 ∈ V, a ∈ A
and b1, b2 ∈ B, give the first equation in item (4), the second one being similar.

The Jacobi identity for elements ui ⊗ bi, i = 1, 2, 3, for ui ∈ V and bi ∈ B gives∑
cyclic

Db1,b2×b3 = 0, T (b1, b2 × b3) = T (b2, b3 × b1),

which, in view of the symmetry of the bilinear map b1× b2, proves half of the asser-
tions in item (5), the other half being implied by the Jacobi identity for elements
v∗i ⊗ ci, i = 1, 2, 3, for v∗i ∈ V∗ and ci ∈ C.

Finally, for elements u1, u2 ∈ V, v∗ ∈ V∗, b1, b2 ∈ B, c ∈ C,

[[u1 ⊗ b1, u2 ⊗ b2], v
∗ ⊗ c] = [(u1 ∧ u2)⊗ (b1 × b2), v

∗ ⊗ c]

= (u1 ∧ u2) ∧ v∗ ⊗ (b1 × b2)× c =
(
(v∗u1)u2 − (v∗u2)u1

)
⊗ (b1 × b2)× c,

while

[[u1 ⊗ b1, v
∗ ⊗ c], u2 ⊗ b2]

= [
(
u1v

∗ − 1

3
(v∗u1)I3

)
⊗ T (b1, c) +

1

3
v∗u1Db1,c, u2 ⊗ b2]

=
(
(v∗u2)u1 −

1

3
(v∗u1)u2

)
⊗ T (b1, c)b2 +

1

3
(v∗u1)u2 ⊗Db1,cb2,

[u1 ⊗ b1, [u2 ⊗ b2, v
∗ ⊗ c]]

[u1 ⊗ b1,
(
u2v

∗ − 1

3
(v∗u2)I3

)
⊗ T (b2, c) +

1

3
v∗u2Db2,c]

= −
(
(v∗u1)u2 −

1

3
(v∗u2)u1

)
⊗ T (b2, c)b1 −

1

3
(v∗u2)u1 ⊗Db2,cb1.

Hence the Jacobi identity here is equivalent to the first condition in item (6); the
second condition can be proven in a similar way.

The converse follows from straightforward computations. �

Given an alternative algebra A, the ideal E(A) generated by the associators
(a1, a2, a3) = (a1a2)a3 − a1(a2a3) is E(A) = (A,A,A) + (A,A,A)A = (A,A,A) +
A(A,A,A). The associative nucleus of A is N(A) := {a ∈ A | (a,A,A) = 0}, while
the center is Z(A) = {a ∈ N(A) | aa′ = a′a, ∀ a′ ∈ A}.

Corollary 2.2. Let L be a Lie algebra which contains a subalgebra isomorphic to
sl(V) for a vector space V of dimension 3 so that L decomposes, as a module for
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sl(V), as in (2.1). Then, with the notation used so far, the alternative algebra A
is unital (the distinguished element 1 being its unit element), with 1 acting as the
identity on both B and C, and the following conditions hold:

• E(A)B = 0 = CE(A), so that B (respectively C) is a left (resp. right) module
for the associative algebra A/E(A).

• T (B,C) is an ideal of A contained in its associative nucleus N(A), and
T (B,B× B) and T (C× C,C) are ideals of A contained in Z(A).

• For any b, b1, b2 ∈ B and any c, c1, c2 ∈ C, the following conditions hold:

Db1,cb2 −Db2,cb1 = 2
(
T (b2, c)b1 − T (b1, c)b2

)
,

Db,c2c1 −Db,c1c2 = 2
(
c1T (b, c2)− c2T (b, c1)

)
.

• If the Lie algebra L is simple, then either the algebra A is associative or else
A = E(A) and B = C = 0. Moreover, if B 	= 0, then C coincides with B×B,
and A coincides with T (B,B× B), and A is a commutative and associative
algebra.

Proof. For any a1, a2, a3 ∈ A and b ∈ B,

(a1, a2, a3)b = (a1a2)(a3b)− a1((a2a3)b)

= a1(a2(a3b))− a1(a2(a3b)) = 0,

because of Theorem 2.1, item (2). Also, this result shows that annA(B) = {a ∈
A | aB = 0} is an ideal of A. Hence, E(A)B = 0, as E(A) is the ideal generated by
(A,A,A). In a similar manner, one proves CE(A) = 0.

For any b ∈ B and c ∈ C, T (b, c) is an element of A, and adT (b,c) : a �→
[T (b, c), a] = Db,ca is a derivation of A by the previous theorem. Since A is alter-
native, this shows that T (b, c) is in the associative nucleus N(A). Now for b1, b2, b3
∈ B,

aT (b1, b2 × b3) = T (ab1, b2 × b3) = T (b2, b3 × (ab1))

= T (b2, (b3 × b1)a) = T (b2, b3 × b1)a = T (b1, b2 × b3)a,

which proves that T (B,B × B) is an ideal of A contained in the center Z(A). By
similar arguments, T (C× C,C) is shown to be contained in Z(A) too.

For any b1, b2 ∈ B and c ∈ C, the previous theorem gives

(b1 × b2)× c = −1

3
T (b1, c)b2 +

1

3
Db1,cb2 − T (b2, c)b1.

We permute b1 and b2 and use the fact that × is symmetric to get

Db1,cb2 −Db2,cb1 = 2
(
T (b2, c)b1 − T (b1, c)b2

)
.

With the same arguments we prove

Db,c2c1 −Db,c1c2 = 2
(
c1T (b, c2)− c2T (b, c1)

)
for any b ∈ B, and c1, c2 ∈ C.

Finally, since the ideal E(A) of the alternative algebra A is invariant under deriva-
tions, the subspace (sl(V) ⊗ E(A)

)
⊕ DE(A),A is an ideal of the Lie algebra L. In

particular, if L is simple, then either A = E(A) and B = C = 0 or E(A) = 0 and
A is associative. Moreover, if B is nonzero, the ideal of L generated by V ⊗ B is(
sl(V) ⊗ T (B,C)

)
⊕

(
V ⊗ B

)
⊕

(
V∗ ⊗ (B × B)

)
⊕ DB,C. Hence if L is simple, we

obtain C = B × B and A = T (B,C) = T (B,B × B), which is commutative and
associative. �
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3. Structurable algebras

This section is devoted to establishing a relationship between the Lie algebras
with prescribed sl3 decomposition considered above with a class of structurable
algebras. This will be done by exploiting the action of a subgroup of the group of
automorphisms of the Lie algebra isomorphic to the symmetric group S4.

Theorem 3.1. Let L be a Lie algebra which contains a subalgebra isomorphic to
sl(V) for a vector space V of dimension 3 so that L decomposes, as a module for
sl(V), as in (2.1). Then, with the notation used so far, the vector space

(3.1) A =

(
A C
B A

)

with the multiplication

(3.2)

(
a1 c
b a2

)
·
(
a′1 c′

b′ a′2

)
=

(
a1a

′
1 − T (b′, c) c′a1 + ca′2 + b× b′

a′1b+ a2b
′ + c× c′ a′2a2 − T (b, c′)

)

and the involution

(3.3)

(
a1 c
b a2

)
=

(
a2 c
b a1

)

is a structurable algebra.

Proof. Take a basis {e1, e2, e3} of V with det(e1 ∧ e2 ∧ e3) = 1 and its dual basis
{e∗1, e∗2, e∗3} in V∗.

The symmetric group S4 acts on V as follows [7, (7.1)]:

τ1 = (12)(34) : e1 �→ e1, e2 �→ −e2, e3 �→ −e3,

τ2 = (23)(14) : e1 �→ −e1, e2 �→ e2, e3 �→ −e3,

ϕ = (123) : e1 �→ e2 �→ e3 �→ e1,

τ = (12) : e1 �→ −e1, e2 �→ −e3, e3 �→ −e2.

(Thus V is the tensor product of the sign module and the standard irreducible
three-dimensional module for S4, and in this way, S4 embeds in the special linear
group SL(V).)

The inner product given by (ei|ej) = δij for any i, j ∈ {1, 2, 3} is invariant under
the action of S4, so V is self-dual as an S4-module, and the action of S4 on V∗

(where σv∗ = v∗σ−1) is given by the “same formulas”:

τ1 = (12)(34) : e∗1 �→ e∗1, e∗2 �→ −e∗2, e∗3 �→ −e∗3,

τ2 = (23)(14) : e∗1 �→ −e∗1, e∗2 �→ e∗2, e∗3 �→ −e∗3,

ϕ = (123) : e∗1 �→ e∗2 �→ e∗3 �→ e∗1,

τ = (12) : e∗1 �→ −e∗1, e∗2 �→ −e∗3, e∗3 �→ −e∗2.

Since S4 acts by elements in SL(V), this action of S4 on V and on V∗ extends to
an action by automorphisms on the whole algebra L. Then the subspace

L0 = {X ∈ L | τ1X = X, τ2X = −X}
becomes a structurable algebra [7, Thm. 7.5] with involution and multiplication
given by the formulas

X̄ = −τX,

X · Y = −τ
(
[ϕX,ϕ2Y ]

)
,
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for any X,Y ∈ L0. But we easily deduce that

L0 = (e2e
∗
3 ⊗ A)⊕ (e3e

∗
2 ⊗ A)⊕ (e1 ⊗ B)⊕ (e∗1 ⊗ C).

Identifying L0 with the 2× 2 matrices A =
(
A C
B A

)
by means of

−e2e
∗
3 ⊗ a1 + e3e

∗
2 ⊗ a2 + e1 ⊗ b+ e∗1 ⊗ c ↔

(
a1 c
b a2

)
,

we determine that the structurable product and the involution become(
a1 c
b a2

)
·
(
a′1 c′

b′ a′2

)
=

(
a1a

′
1 − T (b′, c) c′a1 + ca′2 + b× b′

a′1b+ a2b
′ + c× c′ a′2a2 − T (b, c′)

)
,

(
a1 c
b a2

)
=

(
a2 c
b a1

)
,

as required. �

Items (5) and (6) of Theorem 2.1 show that for any b ∈ B and c ∈ C,

(b× b)× (b× b) = −4

3
T (b, b× b)b,

(c× c)× (c× c) = −4

3
cT (c× c, c).

(3.4)

Also, using Theorem 2.1 and Corollary 2.2, we compute that

(c× (b× b))× b = −4

3
(T (b, c)b)× b+

1

3
(Db,cb)× b

= −4

3
(b× b)T (b, c) +

1

6
Db,c(b× b) (as the product

b1 × b2 from B× B into C is s-invariant)

= −4

3
(b× b)T (b, c) +

1

3

(
(b× b)T (b, c)− cT (b, b× b)

)

= −(b× b)T (b, c)− 1

3
cT (b, b× b),

and an analogous result with the roles of b and c interchanged. So we conclude that
the equations

(c× (b× b))× b = −(b× b)T (b, c)− 1

3
cT (b, b× b),

(b× (c× c))× c = −T (b, c)(c× c)− 1

3
T (c× c, c)b,

(3.5)

hold for any b ∈ B and c ∈ C.

Equations (3.4) and (3.5) are precisely the ones that appear in [2, Ex. 6.4] and
are needed to ensure that the algebra defined there, which coincides with our A but
with the added restrictions of A being commutative and associative, is structurable.
(Note that the bilinear form T (., .) considered in [2, Ex. 6.4] equals our −T (., .).)

However some of the previous arguments show that if our structurable algebra
A is simple and A 	= 0, then A is simple, and since T (B,B×B) and T (C×C,C) are
ideals of A contained in the center Z(A), either A is commutative and associative or

else T (B,B× B) = 0 = T (C × C,C). But in this case, the subspace
(

0 B × B
C × C 0

)
becomes an ideal, so if A is simple, either A is commutative and associative or else
B× B = 0 = C× C.
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Therefore, when considering simple algebras, we are dealing exactly with the
situation considered by Allison and Faulkner in [2].

Theorem 3.1 shows that the restrictions on the bilinear maps involved are suffi-
cient to ensure that the algebra A in (3.1), with multiplication (3.2) and involution
(3.3) is a structurable algebra.

A natural question to ask is whether these conditions are also necessary. More
precisely, does any structurable algebra of the form A as in (3.1) with multiplication
(3.2) and involution (3.3), constructed from a unital alternative algebra A, left and
right unital “associative” modules B and C, and bilinear maps T (b, c), b1 × b2, and
c1 × c2 coordinatize a Lie algebra L with a subalgebra isomorphic to sl(V) for a
vector space V of dimension 3 and with decomposition as in (2.1)? (We do not
impose any further conditions on these bilinear maps besides requiring that the
resulting algebra A be structurable.)

Our last result answers this question in the affirmative.

Theorem 3.2. Let A be a unital alternative algebra; let B (respectively C) be a left
(respectively right) unital associative module for A; and let B × C → A : (b, c) �→
T (b, c), B × B → C : (b1, b2) �→ b1 × b2, and C × C → B : (c1, c2) �→ c1 × c2 be
bilinear maps which make the vector space A in (3.1) with the multiplication (3.2)
and involution in (3.3) into a structurable algebra. Then there is a Lie algebra L

containing a subalgebra isomorphic to sl(V), for a vector space V of dimension 3,
such that L decomposes as in (2.1) for a suitable vector space s such that the Lie
bracket on L is given by (2.2) for some bilinear maps A× A → s : (a, a′) �→ Da,a′ ,
B × C → s : (b, c) �→ Db,c, s × A → A : (d, a) �→ da, s × B → B : (d, b) �→ db, and
s× C → C : (d, c) �→ dc.

Proof. Consider the Lie algebra L = K(A,−, γ,V) in [2, Sec. 4] attached to the
structurable algebra (A,−), the triple γ = (1, 1, 1), and the Lie subalgebra V = TI .
This Lie algebra L, which coincides with the Lie algebra g(A, ·,−) in [6, Ex. 3.1],
is the direct sum

L = TI ⊕A[12]⊕A[23]⊕A[31],

where TI is the span of the triples T = (T1, T2, T3) with

Ti = Lx̄Ly − LȳLx,

Tj = Rx̄Ry −RȳRx,

Tk = Rx̄y−ȳx + LyLx̄ − LxLȳ,

(3.6)

for x, y ∈ A and (i, j, k) a cyclic permutation of (1, 2, 3). Here Lxy = xy = Ryx.
The subspace TI is a Lie algebra with componentwise bracket, and the Lie bracket
in L is given by extending the bracket in TI by setting x[ij] = −x̄[ji] for any x ∈ A

and

[x[ij], y[jk]] = −[x[jk], y[ij]] = (xy)[ik],

[T, x[ij]] = −[x[ij], T ] = Tk(x)[ij],

[x[ij], y[ij]] = T,

(3.7)

for x, y ∈ A, where (i, j, k) is a cyclic permutation of (1, 2, 3), and T = (T1, T2, T3)
is as in (3.6). Theorems 4.1 and 5.5 in [2] show that L is indeed a Lie algebra. Since
we are assuming that the characteristic of the field is 	= 2, 3, Corollary 3.5 of [2]
shows that TI = {(D,D,D) | D ∈ Der(A, ·,−)}⊕{(Ls2−Rs3 , Ls3−Rs1 , Ls1−Rs2) |
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si ∈ A, s̄i = −si, s1 + s2 + s3 = 0}. Here Der(A, ·,−) is the space of derivations
relative to the product “·” which commute with the involution “−”.

For any a ∈ A, consider the linear span sl3[a] of the elements ( a 0
0 0 ) [ij] for

i 	= j and the triples (Lα2s − Rα3s, Lα3s − Rα1s, Lα1s − Rα2s) for αi ∈ F with
α1 + α2 + α3 = 0 and s =

(
a 0
0 −a

)
. (Note that ( a 0

0 0 ) [ij] = − ( 0 0
0 a ) [ji].)

Also for any b ∈ B, consider the linear span V[b] of the elements ( 0 0
b 0 ) [ij], and

for any c ∈ C the linear span V∗[c] of the elements ( 0 c
0 0 ) [ij].

Straightforward computations using (3.7) imply that

• sl3[1] is a Lie subalgebra of L isomorphic to sl(V) (dimV = 3),
• sl3[a] is an adjoint module for sl3[1] for any a ∈ A,
• V[b] is the natural module for sl3[1] for any b ∈ B,
• V∗[c] is the dual module for sl3[1] for any c ∈ C, and
• s = {(D,D,D) | D ∈ Der(A, ·,−)} is a Lie subalgebra which commutes
with sl3[1].

Actually, if we fix a basis {e1, e2, e3} of V as before with det(e1 ∧ e2 ∧ e3) = 1 and
the dual basis {e∗1, e∗2, e∗3} in V∗, we may identify sl3[a] with sl(V)⊗ a for a ∈ A by
means of

eie
∗
j ⊗ a ↔

(
a 0
0 0

)
[ij], for i 	= j

3∑
i=1

αieie
∗
i ⊗ a ↔ (Lα2s −Rα3s, Lα3s −Rα1s, Lα1s −Rα2s),

for αi ∈ F with α1 + α2 + α3 = 0 and s =
(
a 0
0 −a

)
. Also for any b ∈ B and c ∈ C,

we may identify V[b] with V ⊗ b and V∗[c] with V∗ ⊗ c via

ei ⊗ b ↔
(
0 0
b 0

)
[jk], e∗i ⊗ c ↔

(
0 c
0 0

)
[jk],

where (i, j, k) is a cyclic permutation of (1, 2, 3).
In this way we recover the decomposition in (1.3) with bracket as in (2.2) for

suitable maps D.,., as required. �
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