Decomposition factors of D-modules on hyperplane configurations in general position
HTML articles powered by AMS MathViewer
- by Tilahun Abebaw and Rikard Bøgvad
- Proc. Amer. Math. Soc. 140 (2012), 2699-2711
- DOI: https://doi.org/10.1090/S0002-9939-2011-11127-4
- Published electronically: November 28, 2011
- PDF | Request permission
Abstract:
Let $\alpha _{1},...,\alpha _{m}$ be linear functions on $\mathbb {C}^{n}$ and ${X=\mathbb {C}^{n}\setminus V(\alpha )},$ where $\alpha =\prod _{i=1}^{m}\alpha _{i}$ and ${V(\alpha )=\{p\in \mathbb {C}^{n}:\alpha (p)=0\}}$. The coordinate ring ${\mathcal {O}_{X}}=\mathbb {C}[x]_{\alpha }$ of ${X}$ is a holonomic $A_{n}$-module, where $A_{n}$ is the $n$-th Weyl algebra, and since holonomic $A_{n}$-modules have finite length, ${\mathcal {O}_{X}}$ has finite length. We consider a “twisted” variant of this $A_{n}$-module which is also holonomic. Define ${M_{\alpha }^{\beta }}$ to be the free rank 1 $\mathbb {C}[x]_{\alpha }$-module on the generator $\alpha ^{\beta }$ (thought of as a multivalued function), where $\alpha ^{\beta }=\alpha _{1}^{\beta _{1}}...\alpha _{m}^{\beta _{m}}$ and the multi-index $\beta =(\beta _{1},...,\beta _{m})\in \mathbb {C}^{m}$. It is straightforward to describe the decomposition factors of ${M_{\alpha }^{\beta }}$, when the linear functions $\alpha _{1},...,\alpha _{m}$ define a normal crossing hyperplane configuration, and we use this to give a sufficient criterion on $\beta$ for the irreducibility of ${M_{\alpha }^{\beta }}$, in terms of numerical data for a resolution of the singularities of $V(\alpha ).$References
- Tilahun Abebaw and Rikard Bøgvad, Decomposition of $D$-modules over a hyperplane arrangement in the plane, Ark. Mat. 48 (2010), no. 2, 211–229. MR 2672606, DOI 10.1007/s11512-009-0103-7
- J. Àlvarez Montaner, F. J. Castro-Jiménez, and J. M. Ucha, Localization at hyperplane arrangements: combinatorics and $\scr D$-modules, J. Algebra 316 (2007), no. 2, 662–679. MR 2358608, DOI 10.1016/j.jalgebra.2006.12.006
- J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
- Jan-Erik Björk, Analytic ${\scr D}$-modules and applications, Mathematics and its Applications, vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1232191, DOI 10.1007/978-94-017-0717-6
- S. C. Coutinho, A primer of algebraic $D$-modules, London Mathematical Society Student Texts, vol. 33, Cambridge University Press, Cambridge, 1995. MR 1356713, DOI 10.1017/CBO9780511623653
- C. De Concini and C. Procesi, Hyperplane arrangements and box splines, Michigan Math. J. 57 (2008), 201–225. With an appendix by A. Björner; Special volume in honor of Melvin Hochster. MR 2492449, DOI 10.1307/mmj/1220879405
- Corrado De Concini and Claudio Procesi, Topics in hyperplane arrangements, polytopes and box-splines, Universitext, Springer, New York, 2011. MR 2722776
- William Fulton and Robert MacPherson, A compactification of configuration spaces, Ann. of Math. (2) 139 (1994), no. 1, 183–225. MR 1259368, DOI 10.2307/2946631
- Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1995. A first course; Corrected reprint of the 1992 original. MR 1416564
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- Masaki Kashiwara, Semisimple holonomic $\scr D$-modules, Topological field theory, primitive forms and related topics (Kyoto, 1996) Progr. Math., vol. 160, Birkhäuser Boston, Boston, MA, 1998, pp. 267–271. MR 1653028
- Takuro Mochizuki, Asymptotic behaviour of tame harmonic bundles and an application to pure twistor $D$-modules. I, Mem. Amer. Math. Soc. 185 (2007), no. 869, xii+324. MR 2281877, DOI 10.1090/memo/0869
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- Mutsumi Saito, Bernd Sturmfels, and Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, Algorithms and Computation in Mathematics, vol. 6, Springer-Verlag, Berlin, 2000. MR 1734566, DOI 10.1007/978-3-662-04112-3
- S. Khoroshkin and A. Varchenko, Quiver $\scr D$-modules and homology of local systems over an arrangement of hyperplanes, IMRP Int. Math. Res. Pap. (2006), Art. ID 69590, 116. MR 2282180
- Richard P. Stanley, An introduction to hyperplane arrangements, Geometric combinatorics, IAS/Park City Math. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2007, pp. 389–496. MR 2383131, DOI 10.1090/pcms/013/08
- Tristan Torrelli, On meromorphic functions defined by a differential system of order 1, Bull. Soc. Math. France 132 (2004), no. 4, 591–612 (English, with English and French summaries). MR 2131905, DOI 10.24033/bsmf.2475
- Uli Walther, Bernstein-Sato polynomial versus cohomology of the Milnor fiber for generic hyperplane arrangements, Compos. Math. 141 (2005), no. 1, 121–145. MR 2099772, DOI 10.1112/S0010437X04001149
Bibliographic Information
- Tilahun Abebaw
- Affiliation: Department of Mathematics, Addis Ababa University, Ethiopia – and – Stockholm University, SE-10691 Stockholm, Sweden
- Email: tabebaw@math.aau.edu.et
- Rikard Bøgvad
- Affiliation: Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden
- Email: rikard@math.su.se
- Received by editor(s): July 14, 2010
- Received by editor(s) in revised form: March 2, 2011
- Published electronically: November 28, 2011
- Additional Notes: The first author was supported in part by the International Science Program, Uppsala University
- Communicated by: Lev Borisov
- © Copyright 2011 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 2699-2711
- MSC (2010): Primary 32C38, 52C35; Secondary 14F10, 32S22
- DOI: https://doi.org/10.1090/S0002-9939-2011-11127-4
- MathSciNet review: 2910758
Dedicated: Dedicated to the memory of Demissu Gemeda