Equidistribution of Hecke points on the supersingular module
HTML articles powered by AMS MathViewer
- by Ricardo Menares
- Proc. Amer. Math. Soc. 140 (2012), 2687-2691
- DOI: https://doi.org/10.1090/S0002-9939-2011-11148-1
- Published electronically: December 29, 2011
- PDF | Request permission
Abstract:
For a fixed prime $p$, we consider the (finite) set of supersingular elliptic curves over $\overline {\mathbb {F}}_p$. Hecke operators act on this set. We compute the asymptotic frequence with which a given supersingular elliptic curve visits another under this action.References
- Laurent Clozel and Emmanuel Ullmo, Équidistribution des points de Hecke, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 193–254 (French). MR 2058609
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- M. Eichler, The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 320, Springer, Berlin, 1973, pp. 75–151. MR 0485698
- Benedict H. Gross, Heights and the special values of $L$-series, Number theory (Montreal, Que., 1985) CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115–187. MR 894322
- Toshitsune Miyake, Modular forms, Reprint of the first 1989 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. Translated from the 1976 Japanese original by Yoshitaka Maeda. MR 2194815
Bibliographic Information
- Ricardo Menares
- Affiliation: Facultad de Matematicas, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna 4860, Santiago, Chile
- Email: remenares@mat.puc.cl
- Received by editor(s): January 27, 2011
- Received by editor(s) in revised form: March 18, 2011
- Published electronically: December 29, 2011
- Communicated by: Matthew A. Papanikolas
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2687-2691
- MSC (2010): Primary 11F11, 14H52; Secondary 11F32
- DOI: https://doi.org/10.1090/S0002-9939-2011-11148-1
- MathSciNet review: 2910756