Transfer maps and projection formulas
HTML articles powered by AMS MathViewer
- by Gonçalo Tabuada
- Proc. Amer. Math. Soc. 140 (2012), 2589-2597
- DOI: https://doi.org/10.1090/S0002-9939-2011-11169-9
- Published electronically: December 1, 2011
- PDF | Request permission
Abstract:
Transfer maps and projection formulas are undoubtedly one of the key tools in the development and computation of (co)homology theories. In this paper we develop a unified treatment of transfer maps and projection formulas in the non-commutative setting of dg categories. As an application, we obtain transfer maps and projection formulas in algebraic $K$-theory, cyclic homology, topological cyclic homology, and other scheme invariants.References
- A. Blumberg and M. Mandell, Localization theorems in topological Hochschild homology and topological cyclic homology. Available at arXiv:$0802.3938$.
- M. Bökstedt, W. C. Hsiang, and I. Madsen, The cyclotomic trace and algebraic $K$-theory of spaces, Invent. Math. 111 (1993), no. 3, 465–539. MR 1202133, DOI 10.1007/BF01231296
- Francis Borceux, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Applications, vol. 51, Cambridge University Press, Cambridge, 1994. Categories and structures. MR 1313497
- D.-C. Cisinski and G. Tabuada, Non-connective $K$-theory via universal invariants. Compositio Mathematica 147 (2011), 1281–1320.
- —, Symmetric monoidal structure on non-commutative motives. Available at arXiv:$1001.0228\textrm {v}2$. To appear in J. of $K$-Theory.
- Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691. MR 2028075, DOI 10.1016/j.jalgebra.2003.05.001
- A. Grothendieck, Théorie des intersections et théorème de Riemann-Roch. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). Lecture Notes in Mathematics 225 (1971).
- Lars Hesselholt and Ib Madsen, On the $K$-theory of local fields, Ann. of Math. (2) 158 (2003), no. 1, 1–113. MR 1998478, DOI 10.4007/annals.2003.158.1
- Bernhard Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190. MR 2275593
- Bernhard Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), no. 1, 1–56. MR 1667558, DOI 10.1016/S0022-4049(97)00152-7
- Bernhard Keller, On the cyclic homology of ringed spaces and schemes, Doc. Math. 3 (1998), 231–259. MR 1647519
- Jean-Louis Loday, Cyclic homology, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by María O. Ronco. MR 1217970, DOI 10.1007/978-3-662-21739-9
- Valery A. Lunts and Dmitri O. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23 (2010), no. 3, 853–908. MR 2629991, DOI 10.1090/S0894-0347-10-00664-8
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129
- Christian Schlichtkrull, Transfer maps and the cyclotomic trace, Math. Ann. 336 (2006), no. 1, 191–238. MR 2242623, DOI 10.1007/s00208-006-0783-2
- Marco Schlichting, Negative $K$-theory of derived categories, Math. Z. 253 (2006), no. 1, 97–134. MR 2206639, DOI 10.1007/s00209-005-0889-3
- Gonçalo Tabuada, Higher $K$-theory via universal invariants, Duke Math. J. 145 (2008), no. 1, 121–206. MR 2451292, DOI 10.1215/00127094-2008-049
- Gonçalo Tabuada, Invariants additifs de DG-catégories, Int. Math. Res. Not. 53 (2005), 3309–3339 (French). MR 2196100, DOI 10.1155/IMRN.2005.3309
- Gonçalo Tabuada, On Drinfeld’s dg quotient, J. Algebra 323 (2010), no. 5, 1226–1240. MR 2584954, DOI 10.1016/j.jalgebra.2009.12.020
- Gonçalo Tabuada, Generalized spectral categories, topological Hochschild homology and trace maps, Algebr. Geom. Topol. 10 (2010), no. 1, 137–213. MR 2580431, DOI 10.2140/agt.2010.10.137
- —, Products, multiplicative Chern characters, and finite coefficients via non-commutative motives. Available at arXiv:1101.0731.
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Bertrand Toën, The homotopy theory of $dg$-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667. MR 2276263, DOI 10.1007/s00222-006-0025-y
- C. Weibel, The $K$-book: An introduction to algebraic $K$-theory. A graduate textbook in progress. Available at http://www.math.rutgers.edu/weibel/Kbook.html.
Bibliographic Information
- Gonçalo Tabuada
- Affiliation: Departamento de Matemática e CMA, FCT-UNL, Quinta da Torre, 2829-516 Caparica, Portugal
- Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- MR Author ID: 751291
- Email: tabuada@fct.unl.pt, tabuada@math.mit.edu
- Received by editor(s): June 25, 2010
- Received by editor(s) in revised form: March 4, 2011
- Published electronically: December 1, 2011
- Additional Notes: The author was partially supported by the FCT-Portugal grant PTDC/MAT/098317/2008.
- Communicated by: Brooke Shipley
- © Copyright 2011 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 2589-2597
- MSC (2000): Primary 18D20, 19D55, 14F05
- DOI: https://doi.org/10.1090/S0002-9939-2011-11169-9
- MathSciNet review: 2910747