Generalized Lucas-Lehmer tests using Pell conics
HTML articles powered by AMS MathViewer
- by Samuel A. Hambleton
- Proc. Amer. Math. Soc. 140 (2012), 2653-2661
- DOI: https://doi.org/10.1090/S0002-9939-2011-11196-1
- Published electronically: December 20, 2011
- PDF | Request permission
Abstract:
Pell conics are used to write a Proth-Riesel twin-primality test. We discuss easy-to-find primality certificates for integers of the form $m^n h \pm 1$. The known primality test for $3^n h \pm 1$ is associated with $X^2+3Y^2 = 4$.References
- Pedro Berrizbeitia and T. G. Berry, Cubic reciprocity and generalised Lucas-Lehmer tests for primality of $A\cdot 3^n\pm 1$, Proc. Amer. Math. Soc. 127 (1999), no.Β 7, 1923β1925. MR 1487359, DOI 10.1090/S0002-9939-99-04786-3
- Benedict H. Gross, An elliptic curve test for Mersenne primes, J. Number Theory 110 (2005), no.Β 1, 114β119. MR 2114676, DOI 10.1016/j.jnt.2003.11.011
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716, DOI 10.1007/978-1-4757-2103-4
- F. Lemmermeyer, Conics β A poor manβs elliptic curves, arXiv:math/0311306v1, preprint at http://www.fen.bilkent.edu.tr/~franz/publ/conics.pdf
- R. Lidl, G. L. Mullen, and G. Turnwald, Dickson polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 65, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1237403
- Hans Riesel, Lucasian criteria for the primality of $N=h\cdot 2^{n} -1$, Math. Comp. 23 (1969), 869β875. MR 262163, DOI 10.1090/S0025-5718-1969-0262163-1
- H. C. Williams, Effective primality tests for some integers of the forms $A5^n-1$ and $A7^n-1$, Math. Comp. 48 (1987), no.Β 177, 385β403. MR 866123, DOI 10.1090/S0025-5718-1987-0866123-X
Bibliographic Information
- Samuel A. Hambleton
- Affiliation: School of Mathematics and Physics, University of Queensland, St. Lucia, Queensland, Australia 4072
- Email: sah@maths.uq.edu.au
- Received by editor(s): June 11, 2009
- Received by editor(s) in revised form: November 9, 2010, and March 15, 2011
- Published electronically: December 20, 2011
- Communicated by: Ted Chinburg
- © Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 2653-2661
- MSC (2010): Primary 11Y11; Secondary 11G30
- DOI: https://doi.org/10.1090/S0002-9939-2011-11196-1
- MathSciNet review: 2910753