Bordism invariance of the coarse index
HTML articles powered by AMS MathViewer
- by Christopher Wulff
- Proc. Amer. Math. Soc. 140 (2012), 2693-2697
- DOI: https://doi.org/10.1090/S0002-9939-2012-11546-1
- Published electronically: February 21, 2012
- PDF | Request permission
Abstract:
We prove bordism invariance of the coarse index of complex elliptic pseudodifferential operators. In our discussion we introduce directed $c$-bordisms, whose usefulness is illustrated in the context of existence of uniformly positive scalar curvature metrics on open manifolds.References
- M. F. Atiyah, Global theory of elliptic operators, Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969) Univ. Tokyo Press, Tokyo, 1970, pp. 21–30. MR 0266247
- Maxim Braverman, New proof of the cobordism invariance of the index, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1095–1101. MR 1873784, DOI 10.1090/S0002-9939-01-06250-5
- Catarina Carvalho, A $K$-theory proof of the cobordism invariance of the index, $K$-Theory 36 (2005), no. 1-2, 1–31 (2006). MR 2274155, DOI 10.1007/s10977-005-3109-3
- Bernhard Hanke, Dieter Kotschick, John Roe, and Thomas Schick, Coarse topology, enlargeability, and essentialness, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 3, 471–493 (English, with English and French summaries). MR 2482205, DOI 10.24033/asens.2073
- Nigel Higson, A note on the cobordism invariance of the index, Topology 30 (1991), no. 3, 439–443. MR 1113688, DOI 10.1016/0040-9383(91)90024-X
- Nigel Higson, Erik Kjær Pedersen, and John Roe, $C^\ast$-algebras and controlled topology, $K$-Theory 11 (1997), no. 3, 209–239. MR 1451755, DOI 10.1023/A:1007705726771
- Nigel Higson and John Roe, Analytic $K$-homology, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000. Oxford Science Publications. MR 1817560
- Matthias Lesch, Deficiency indices for symmetric Dirac operators on manifolds with conic singularities, Topology 32 (1993), no. 3, 611–623. MR 1231967, DOI 10.1016/0040-9383(93)90012-K
- Richard B. Melrose and Paolo Piazza, Analytic $K$-theory on manifolds with corners, Adv. Math. 92 (1992), no. 1, 1–26. MR 1153932, DOI 10.1016/0001-8708(92)90059-T
- Sergiu Moroianu, Cusp geometry and the cobordism invariance of the index, Adv. Math. 194 (2005), no. 2, 504–519. MR 2139923, DOI 10.1016/j.aim.2004.07.005
- Sergiu Moroianu, On Carvalho’s $K$-theoretic formulation of the cobordism invariance of the index, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3395–3404. MR 2231925, DOI 10.1090/S0002-9939-06-08347-X
- Liviu I. Nicolaescu, On the cobordism invariance of the index of Dirac operators, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2797–2801. MR 1402879, DOI 10.1090/S0002-9939-97-03975-0
- Richard S. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. MR 0198494
- John Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, vol. 90, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. MR 1399087, DOI 10.1090/cbms/090
- John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. MR 2007488, DOI 10.1090/ulect/031
Bibliographic Information
- Christopher Wulff
- Affiliation: Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany
- Received by editor(s): March 19, 2011
- Published electronically: February 21, 2012
- Communicated by: Varghese Mathai
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 2693-2697
- MSC (2010): Primary 19K56, 58J22; Secondary 19K35
- DOI: https://doi.org/10.1090/S0002-9939-2012-11546-1
- MathSciNet review: 2910757