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VOLUME FORMULAS FOR A SPHERICAL TETRAHEDRON

JUN MURAKAMI

(Communicated by Jianguo Cao)

Abstract. The present paper gives two concrete formulas for the volume of
an arbitrary spherical tetrahedron that is in a 3-dimensional spherical space of
constant curvature +1. One formula is given in terms of dihedral angles, and
another one is given in terms of edge lengths.

Introduction

The calculation of the volume of an arbitrary tetrahedron in a 3-space of non-zero
constant curvature is rather hard, and the first result was given in [1] in 1999 for
hyperbolic tetrahedra. The papers [5] and [4] gave another formula for hyperbolic
tetrahedra, which is implicitly based on the quantum 6j-symbol. Moreover, it
was stated in [5] that an adequate analytic continuation of the obtained formula
is also applicable for a spherical tetrahedron. But the formula is given by multi-
valued functions, and it is not described which stratum we should select for actual
computation. On the other hand, volumes of spherical tetrahedra of special shapes
were given by many people in the past, and the most recent work is [2], which gives
a formula for a spherical tetrahedron having a small symmetry.

In the present paper, volume formulas for a spherical tetrahedron T of general
shape are given in Theorems 1.1 and 1.2. The formula in Theorem 1.1 is given in
terms of dihedral angles, and the formula in Theorem 1.2 is given in terms of edge
lengths. These formulas are obtained by improving those in [5] and [4], and, by
using the Schläfli differential equality, it is shown that the new formulas actually
give the volume of T modulo 2π2. Note that 2π2 is the volume of S3 with radius
1, which is the universal cover of any 3-dimensional spherical space of constant
curvature +1. Since T can be included in a 3-dimensional hemisphere, the volume
of T is less than π2 and so we can actually compute the volume of T from the
formulas in Theorems 1.1 and 1.2.

1. Volume formulas

1.1. Volume formula in terms of dihedral angles. Let T be a spherical tetra-
hedron and let θ1, θ2, · · · , θ6 be its dihedral angles at edges e1, e2, · · · , e6, respec-
tively, given in Figure 1. We assume that 0 < θj < π for j = 1, 2, · · · , 6. Let
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Figure 1. Edges of T

a1 = eiθ1 , a2 = eiθ2 , · · · , a6 = eiθ6 , and

L(a1, a2, · · · , a6, z)

=
1

2

(
Li2(z) + Li2(a

−1
1 a−1

2 a−1
4 a−1

5 z) + Li2(a
−1
1 a−1

3 a−1
4 a−1

6 z)

+ Li2(a
−1
2 a−1

3 a−1
5 a−1

6 z)− Li2(−a−1
1 a−1

2 a−1
3 z)− Li2(−a−1

1 a−1
5 a−1

6 z)

− Li2(−a−1
2 a−1

4 a−1
6 z)− Li2(−a−1

3 a−1
4 a−1

5 z) +
3∑

j=1

log aj log aj+3

)
,

where Li2(z) is the dilogarithm function defined by analytic continuation of the
following integral:

(1.1) Li2(x) = −
∫ x

0

log(1− t)

t
dt for a real number x < 1.

The analytic continuation of the right-hand side integral defines a multi-valued
complex function li2(z), and let Li2(z) be the principal branch of li2(z) which is the
analytic continuation of (1.1) on the region C \ {x ∈ R | x ≥ 1}. We also fix the
principal branch of the log function as usual by the branch cut along the negative
real axis.

We define the auxiliary parameter z0 as

(1.2) z0 =
−q1 +

√
q21 − 4 q0 q2
2 q2

,

where

q0 = a1 a4 + a2 a5 + a3 a6 + a1 a2 a6 + a1 a3 a5 + a2 a3 a4

+ a4 a5 a6 + a1 a2 a3 a4 a5 a6,

q1 = −(a1 − a−1
1 )(a4 − a−1

4 )− (a2 − a−1
2 )(a5 − a−1

5 )− (a3 − a−1
3 )(a6 − a−1

6 ),

q2 = a−1
1 a−1

4 + a−1
2 a−1

5 + a−1
3 a−1

6 + a−1
1 a−1

2 a−1
6 + a−1

1 a−1
3 a−1

5

+ a−1
2 a−1

3 a−1
4 + a−1

4 a−1
5 a−1

6 + a−1
1 a−1

2 a−1
3 a−1

4 a−1
5 a−1

6 .

Then z0 is a solution of

(1.3) exp

(
2 z

∂L

∂z

)
= 1,

where

exp

(
2 z

∂L

∂z

)
=

(a1 a2 a3 + z) (a1 a5 a6 + z) (a2 a4 a6 + z) (a3 a4 a5 + z)

(1− z) (a1 a2 a4 a5 − z) (a1 a3 a4 a6 − z) (a2 a3 a5 a6 − z)
.
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Now we state the main result of this paper.

Theorem 1.1. Let T be a spherical tetrahedron with dihedral angles θ1, θ2, · · · , θ6
at the edges e1, e2, · · · e6 given in Figure 1. Let aj = eiθj for j = 1, 2, · · · , 6 and
let Vol(T ) be the volume of T . Then

Vol(T ) = −Re(L(a1, a2, · · · , a6, z0)) + π

⎛
⎝arg(−q2) +

1

2

6∑
j=1

θj

⎞
⎠− 3

2
π2

mod 2π2,

where Re(z) is the real part of z and z0, q2 given by (1.2).

1.2. Volume formula in terms of edge lengths. Let T be a spherical tetrahe-
dron with edge lengths l1, l2, · · · , l6 at the edges e1, e2, · · · e6, respectively, given

in Figure 1. Let bj = ei lj for j = 1, 2, · · · , 6 and let L̃(b1, b2, b3, b4, b5, b6, z) =

L(−b−1
4 , −b−1

5 , −b−1
6 , −b−1

1 , −b−1
2 , −b−1

3 , z). Then the following formula holds.

Theorem 1.2. For a spherical tetrahedron T as above,

Vol(T ) = Re
(
L̃(b1, b2, · · · , b6, z̃0)

)
− π arg(−q̃2)

−
6∑

j=1

lj
∂ Re

(
L̃(b1, b2, · · · , b6, z)

)
∂lj

∣∣∣∣∣
z=z̃0

− 1

2
π2 mod 2π2,

where z̃0 and q̃2 are obtained from z0 and q2 in (1.2) by substituting aj with −b−1
j±3

for j = 1, 2, · · · , 6.

2. Proof of the formulas

2.1. Gram matrices. Let T be a spherical tetrahedron with dihedral angles θ1,
· · · , θ6 as before. Let G be the Gram matrix of T defined by

G =

⎛
⎜⎜⎝

1 − cos θ1 − cos θ2 − cos θ6
− cos θ1 1 − cos θ3 − cos θ5
− cos θ2 − cos θ3 1 − cos θ4
− cos θ6 − cos θ5 − cos θ4 1

⎞
⎟⎟⎠ .

An actual computation shows that the discriminant in (1.2) is given by

(2.1) q21 − 4 q0 q2 = 16 detG,

which is positive since T is spherical. It is known1 that

(2.2) cos lj =
cpq√
cpp cqq

,

and so we have

(2.3) exp(2 i lj) =
2 c2pq − cpp cqq + 2 i cpq

√
detG sin θj

cpp cqq

1Formula (2.2) comes from the formula on p. 7, l.4, of [2] applied to the dual tetrahedron T ∗.
It is a spherical version of the formula just below (5.1) in [6].
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by using the formula (5.1) in [6] that is c2pq − cpp cqq = − detG sin2 θj . Here
p and q denote the row and column of G = (gab) such that gp′q′ = − cos θj ,
{p, q} = {1, 2, 3, 4} \ {p′, q′} and cab is the cofactor of G, i.e. cab = (−1)a+b detGab

where Gab is the submatrix obtained from G by deleting its a-th row and b-th
column.

2.2. Some functions and their properties. Before proving the formulas, we
introduce some functions and investigate their properties. Let T be an abstract
tetrahedron, let θ1, θ2, · · · , θ6 be its dihedral angles at the edges e1, e2, · · · , e6 as
before, and let

Ds = {(θ1, θ2, · · · , θ6) ∈ (0, π)6 ⊂ R
6 | θ1, θ2, · · · , θ6

correspond to the dihedral angles of a spherical tetrahedron}.

Let aj = eiθj for j = 1, 2, · · · , 6,

Δ0(x, y, z) =

− 1

4

(
Li2(−xy−1z−1) + Li2(−x−1yz−1) + Li2(−x−1y−1z) + Li2(−xyz)

)
,

Δ(a1, a2, · · · , a6) = Δ0(a1, a2, a3) + Δ0(a1, a5, a6) + Δ0(a2, a4, a6)

+ Δ0(a3, a4, a5)−
1

2

6∑
j=1

(
log aj)

2,

U(a1, a2, · · · , a6, z) = L(a1, a2, · · · , a6, z) + Δ(a1, a2, · · · , a6),

and

V (a1, a2, a3, a4, a5, a6)

= −U(a1, a2, a3, a4, a5, a6, z0) + π i

⎛
⎝log z0 −

6∑
j=1

log aj

⎞
⎠− 13

6
π2.

Lemma 2.1. The function Δ(a1, a2, · · · , a6) is analytic on Ds and the imaginary
part of 4aj

∂Δ
∂aj

is given by

Im

(
4 aj

∂Δ

∂aj

)
= −2π.

Proof. We prove this for the case j = 1. For the function Δ,

a1
∂Δ

∂a1
= a1

∂Δ0(a1, a2, a3)

∂a1
+ a1

∂Δ0(a1, a5, a6)

∂a1
− log a1

and

a1
∂Δ0(a1, ap, aq)

∂a1
=

1

4

(
log(1 +

a1
apaq

)− log(1 +
ap
a1aq

)− log(1 +
aq
a1ap

) + log(1 + a1apaq)

)
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for {p, q} = {2, 3}, {5, 6}. The imaginary part Im log(1 + eiθ) is given by

Im log(1 + eiθ) =

⎧⎪⎪⎨
⎪⎪⎩

θ

2
if −π < θ < π,

θ

2
− π if π < θ < 3π.

Let θu, θv, θw be three dihedral angles at three edges having a vertex in common.
Then they satisfy

(2.4) 0 < θu+θv −θw, θu−θv +θw, −θu+θv +θw < π, π < θu+θv +θw < 3π.

Hence Δ0(a1, ap, aq) is analytic on Ds and we have

Im

(
a1

∂Δ0(a1, ap, aq)

∂a1

)
=

θ1
2

− π

4
, Im

(
4 a1

∂Δ

∂a1

)
= −2π.

Moreover, Δ is analytic on Ds because none of the imaginary parts of the log terms
of Δ attain either π or −π on Ds. �
Lemma 2.2. The function L(a1, a2, · · · , a6, z0(a1, a2, · · · , a6)) is analytic on Ds,
and so U(a1, a2, · · · , a6, z0(a1, a2, · · · , a6)) is analytic on Ds.

Proof. We know that |z0| < 1 because, for q0, q1, q2 in (1.2), q1 is a real number
and q0q2 = q0q0 = |q0|2 is a positive real number, and q21 − 4q0q2 is also a positive
real number by (2.1). This implies that, for w ∈ C with |w| = 1, |w z0| < 1. Noting
that Li2(z) is analytic on the unit open disk {z ∈ C | |z| < 1}, all the dilog terms
of L are analytic on Ds since |a1| = · · · = |a6| = 1. �
Lemma 2.3. The differential ∂U

∂z satisfies z0
∂U
∂z

∣∣
z=z0

= π i.

Proof. Since ∂U
∂z = ∂L

∂z and z0 is a solution of equation (1.3), z0
∂U
∂z

∣∣
z=z0

= k π i for

some integer constant k because U is analytic on Ds by the above lemma. Let Tπ
2

be the regular spherical tetrahedron with edge lengths π/2. Then θj = π/2, aj = i
for j = 1, · · · , 6, z0 = (i+ 1)/2 and

z0
∂U

∂z

∣∣∣∣
z=z0

=
1

2

(
−4 log

1− i

2
+ 4 log

1 + i

2

)
= π i.

Hence z0
∂U
∂z

∣∣
z=z0

= πi for all the spherical tetrahedra. �

Now we show the following proposition for V corresponding to the Schläfli dif-
ferential equality

(2.5) dVol(T ) =

6∑
j=1

lj
2
dθj ,

which is a fundamental tool for analyzing the volume. For example, see [3].

Proposition 2.4. The function V satisfies ∂V
∂θj

= lj/2 for j = 1, 2, · · · , 6.

Proof. Let ϕ = exp
(
4 a1

∂Δ
∂a1

)
and ψ = exp

(
2 a1

∂L
∂a1

∣∣∣
z=z0

)
. Then

ϕ =
(a1 + a2 a3)(a1 a2 a3 + 1)(a1 + a5 a6)(a1 a5 a6 + 1)

(a1 a2 + a3)(a1 a3 + a2)(a1 a5 + a6)(a1 a6 + a5)
,

ψ =
(a1 a2 a4 a5 − z0)(a1 a3 a4 a6 − z0)

a4 (a1 a2 a3 + z0)(a1 a5 a6 + z0)
.
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An actual computation and (2.3) show that

exp

(
4a1

∂U

∂a1

)∣∣∣∣
z=z0

= ϕψ2 =
2 c234 − c33c44 + 2ic34

√
detG sin θ1

c33 c44
= exp(2 l1 i).

Hence we get a1
∂U
∂a1

∣∣∣
z=z0

= i (l1 + k π)/2 for some integer constant k because U

is analytic on Ds by Lemma 2.2. For the tetrahedron Tπ
2
given in the proof of

Lemma 2.3, l1 = π/2 and a1
∂U
∂a1

∣∣∣
z=z0

= −3π i/4, which means that k = −2 and

a1
∂U
∂a1

∣∣∣
z=z0

= i (l1 − 2π)/2. According to ∂U
∂θ1

= ia1
∂U
∂a1

, we have

(2.6)
∂U

∂θ1

∣∣∣∣
z=z0

=
1

2
(2π − l1).

Therefore

∂

∂θ1

⎛
⎝−U

(
a1, · · · , a6, z0(a1, · · · , a6)

)
+ π i

(
log z0 −

6∑
j=1

log aj

)⎞⎠
=

l1
2
− ∂z0

∂θ1

∂U

∂z

∣∣∣∣
z=z0

+ π i
∂z0
∂θ1

1

z0
.

Since ∂U
∂z

∣∣
z=z0

= i π/z0 by Lemma 2.3, we get ∂V
∂θ1

= l1/2. �

2.3. Proof of the formula in terms of dihedral angles. We first give a formula
using complex analytic functions.

Proposition 2.5. Let T be a spherical tetrahedron with dihedral angles θ1, θ2, · · · ,
θ6 at the edges e1, e2, · · · e6 as in Figure 1. Let aj = eiθj for j = 1, 2, · · · , 6 as
before and let Vol(T ) be the volume of T . Then

Vol(T ) = V (a1, a2, a3, a4, a5, a6) mod 2π2.

Proof. For the tetrahedron Tπ
2
in the proof of Lemma 2.3, we have aj = i, z0 = 1+i

2

and V (i, i, i, i, i, i, i) = π2/8 = Vol(Tπ
2
) since Tπ

2
is one-sixteenth of S3 and the

volume of S3 with radius 1 is 2π2. Because V is analytic on some neighborhood N
of Tπ

2
in Ds, two functions V and Vol are identical on N by Proposition 2.4 and

Schäfli differential equality. Moreover, Vol is analytic on Ds and so it is given by an
adequate analytic continuation of V . We already showed in previous lemmas that
all the terms in V except πi log z0 are analytic on Ds, and the analytic continuation
of πi log z0 is πi log z0+2kπ2 for some integer k. Hence we get the proposition. �

Proof of Theorem 1.1. We prove Theorem 1.1 by investigating the real part of
V . For θ ∈ [0, 2π] ⊂ R, the real part of Li2(e

iθ) is given by Re
(
Li2(e

iθ)
)
=

Re
(
Li2(e

−iθ)
)
= θ2/4 − π θ/2 + π2/6. Substituting this in each dilog function of

Re(Δ(a1, a2, · · · , a6)), we get Re(Δ(a1, a2, · · · , a6)) = −2π2/3 +
∑6

j=1 πθj/2 by

using (2.4). We also know that Im log z0 = − arg(−q2) since the numerator of z0 in
(1.2) is a negative real number. Hence we get Theorem 1.1 from Proposition 2.5. �

Remark 2.6. The function V is non-continuous at the points where the values of
q2 are positive real numbers.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



VOLUME FORMULAS FOR A SPHERICAL TETRAHEDRON 3295

2.4. Proof of the formula in terms of edge lengths. We use the notation in
Subsection 2.2.

Proof of Theorem 1.2. Let θ1, θ2, · · · , θ6 be the dihedral angles at the edges e1, e2,
· · · , e6 of T and let T ∗ be the dual tetrahedron of T given by [3, p. 294]. Then the
dihedral angles of T ∗ are π − l4, π − l5, π − l6, π − l1, π − l2, π − l3 and the edge
lengths of T ∗ are π − θ4, π − θ5, π − θ6, π − θ1, π − θ2, π − θ3. The relation of
volumes of T and T ∗ is given by [3, p. 294] as follows:

Vol(T ) + Vol(T ∗) +
1

2

6∑
j=1

lj (π − θj) = π2.

By Theorem 1.1, we have

Vol(T ∗) = −Re(L̃(b1, b2, · · · , b6, z̃0)) + π

⎛
⎝arg(−q̃2) +

1

2

6∑
j=1

(π − lj)

⎞
⎠− 3

2
π2

mod 2π2.

Because ∂
∂(π−lj)

U(−b−1
4 ,−b−1

5 ,−b−1
6 ,−b−1

1 ,−b−1
2 ,−b−1

3 , z)
∣∣∣
z=z̃0

=
(
2π−(π−θj)

)
/2

by (2.6) and ∂
∂(π−lj)

Re
(
Δ(−b−1

4 ,−b−1
5 ,−b−1

6 ,−b−1
1 ,−b−1

2 ,−b−1
3 )

)
= π/2 by Lem-

ma 2.1, we know that ∂ Re˜L
∂lj

∣∣∣
z=z̃0

= −θj/2. Hence

Vol(T ) = Re
(
L̃(b1, b2, · · · , b6, z̃0)

)
− π arg(−q̃2)

−
6∑

j=1

lj
∂ Re

(
L̃(b1, b2, · · · , b6, z)

)
∂lj

∣∣∣∣∣
z=z̃0

− 1

2
π2 mod 2π2,

and we get Theorem 1.2. �
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