COMPACTNESS ESTIMATES FOR \Box_b ON A CR MANIFOLD

TRAN VU KHANH, STEFANO PINTON, AND GIUSEPPE ZAMPIERI

Abstract. This paper aims to state compactness estimates for the Kohn-Laplacian on an abstract CR manifold in full generality. The approach consists of a tangential basic estimate in the formulation given by the first author in his thesis, which refines former work by Nicoara. It has been proved by Raich that on a CR manifold of dimension $2n - 1$ which is compact pseudoconvex hypersurface type embedded in the complex Euclidean space and orientable, the property named “$(CR-P_1)$” for $1 \leq q \leq \frac{n-2}{n-1}$, a generalization of the one introduced by Catlin, implies compactness estimates for the Kohn-Laplacian \Box_b in any degree k satisfying $q \leq k \leq n - 1 - q$. The same result is stated by Straube without the assumption of orientability. We regain these results by a simplified method and extend the conclusions to CR manifolds which are not necessarily embedded nor orientable. In this general setting, we also prove compactness estimates in degree $k = 0$ and $k = n - 1$ under the assumption of $(CR-P_1)$ and, when $n = 2$, of closed range for ∂_b. For $n \geq 3$, this refines former work by Raich and Straube and separately by Straube.

1. Introduction and Statements

Let M be a compact pseudoconvex CR manifold of hypersurface type of real dimension $2n - 1$ endowed with the Cauchy-Riemann structure $T^{1,0} M$. We choose a basis $L_1, ..., L_{n-1}$ of $T^{1,0} M$, the conjugated basis $\bar{L}_1, ..., \bar{L}_{n-1}$ of $T^{0,1} M$, and a transversal, purely imaginary, vector field T. We also take a hermitian metric on the complexified tangent bundle in which we get an orthogonal decomposition $\mathbb{C}T M = T^{1,0} M \oplus T^{0,1} M \oplus \mathbb{C}T$. We denote by $\omega_1, ..., \omega_{n-1}, \bar{\omega}_1, ..., \bar{\omega}_{n-1}, \gamma$ the dual basis of 1-forms. We denote by \mathcal{L}_M the Levi form defined by $\mathcal{L}_M(L, L') := \partial \gamma(L, L')$ for $L, L' \in T^{1,0} M$. The coefficients of the matrix (c_{ij}) of \mathcal{L}_M in the above basis are described through the Cartan formula as

$$c_{ij} = \langle \gamma, [L_i, \bar{L}_j] \rangle.$$

We denote by \mathcal{B}^k the space of $(0, k)$-forms u with C^∞ coefficients. They are expressed, in the local basis, as $u = \sum_{|J|=k} u_J \bar{\omega}_J$ for $\bar{\omega}_J = \bar{\omega}_{j_1} \wedge ... \wedge \bar{\omega}_{j_k}$. Associated to the Riemannian metric $\langle \cdot, \cdot \rangle_z$, $z \in M$, and to the element of volume dV, there is a L^2-inner product $\langle u, v \rangle = \int_M \langle u, v \rangle_z dV$. We denote by $(L^2)^k$ the completion of \mathcal{B}^k under this norm. We also use the notation $(H^s)^k$ for the completion under the Sobolev norm H^s. The de-Rham exterior derivative induces a complex $\partial_b : \mathcal{B}^k \to \mathcal{B}^{k+1}$. We denote by $\bar{\partial}_b : \mathcal{B}^k \to \mathcal{B}^{k-1}$ the adjoint and set $\Box_b = \partial_b \partial_b^* + \bar{\partial}_b \bar{\partial}_b$. Let φ be a smooth function, denote by (φ_{ij}) the matrix of the
Levi form $L_\phi = \frac{1}{2}(\bar{\partial}_h \bar{\partial}_h - \bar{\partial}_h \bar{\partial}_h)(\phi)$ in the basis above, and by $\lambda_1^{\phi} \leq \ldots \leq \lambda_n^{\phi}$ the ordered eigenvalues of L_ϕ. Let L_ϕ^2 be the L^2 space weighted by $e^{-\phi}$ and, for $\phi_j := L_j(\phi)$, denote by $L_j^{\phi} = L_j - \phi_j$ the L_ϕ^2-adjoint of $-L_j$. The following is the tangential version of the celebrated Hörmander-Kohn-Morrey basic estimate. Here we present the refinement by Khanh [Kh10] of a former statement by Nicoara [N06]. Let $z_o \in M$. For a suitable neighborhood U of z_o and a constant $c > 0$, we have

$$\|\bar{\partial}_b u\|^2_\phi + \|\bar{\partial}_{\bar{\partial}_b} u\|^2_\phi + c\|u\|^2_\phi \geq \sum_{|K|=k-1}^{q_o} \sum_{i,j} (\bar{\phi}_{ij} u_{iK}, u_{jK})_\phi - \sum_{|J|=k}^{q_o} \sum_{j=1}^{q_o} (\bar{\phi}_{jj} u_j, u_j)_\phi$$

(1.1)

$$+ \sum_{|K|=k-1}^{q_o} \sum_{i,j} (c_{ij} T_{uiK}, u_{jK})_\phi - \sum_{|J|=k}^{q_o} \sum_{j=1}^{q_o} (c_{jj} T_{uj}, u_j)_\phi$$

$$+ \frac{1}{2} \left(\sum_{j=1}^{q_o} \|L_j^\phi u\|^2_\phi + \sum_{j=q_o+1}^{n-1} \|L_j u\|^2_\phi \right),$$

for any $u \in B_k(U)$ where q_o is any integer with $0 \leq q_o \leq n - 1$. We now introduce a potential-theoretical condition which is a variant of the “P-property” by Catlin [C83]. In the present version it has been introduced by Raich [R10].

Definition 1.1. Let z_o be a point of M and q an index in the range $1 \leq q \leq n - 1$. We say that M satisfies property $(CR - P_q)$ at z_o if there is a family of weights $\{\phi^x\}$ in a neighborhood U of z_o such that

$$\begin{cases}
|\phi^x(z)| \leq 1, & z \in U, \\
\sum_{j=1}^{q} \lambda_j^{\phi^x}(z) \geq \epsilon^{-1}, & z \in U \text{ and } \ker L_M(z) \neq \{0\}.
\end{cases}$$

(1.2)

It is obvious that $(CR - P_q)$ implies $(CR - P_k)$ for any $k \geq q$.

Remark 1.2. Outside a neighborhood V_ϵ of ker $d\gamma$, the sum $\sum_{j \leq q} \lambda_j^{\phi^x}$ can get negative; let $-b_\epsilon$ be a bound from below. Now, if c_ϵ is a bound from below for $d\gamma$ outside V_ϵ, by setting $a_\epsilon := \frac{\epsilon^{-1} + b_\epsilon}{q c_\epsilon}$, we have

$$\sum_{j \leq q} \lambda_j^{\phi^x} + a_\epsilon d\gamma = \sum_{j \leq q} \lambda_j^{\phi^x} + q a_\epsilon c_\epsilon \geq \epsilon^{-1} \text{ on the whole } U.$$

(1.3)

Conversely, (1.3) readily yields the second line of (1.2). This equivalence was already noticed in [S10] and justifies our abuse of notation. In fact, (1.3) is named $(CR - P_q)$ by [S10] in accordance with [R10], whereas (1.2) is named “property (P_q) in the nullspace of the Levi form”.

Again, (1.3) for q implies (1.3) for any $k \geq q$.

We now state one of the two main results of the paper.
Theorem 1.3. Let M be a compact pseudoconvex CR manifold of hypersurface type of dimension $2n - 1$. Assume that $(CR - P_q)$ holds for a fixed q with $1 \leq q \leq \frac{n+1}{2}$ over a covering $\{U\}$ of M. Then we have compactness estimates: given ϵ there is C_ϵ such that

$$\|u\|^2 \leq \epsilon(\|\bar{\partial}_b u\|^2 + \|\partial_b u\|^2) + C_\epsilon \|u\|^{-1}$$

for any $u \in D^k_{\partial_b} \cap D^k_{\bar{\partial}_b}$ and $k \in [q, n - 1 - q]$,

where $D^k_{\partial_b}$ and $D^k_{\bar{\partial}_b}$ are the domains of ∂_b and $\bar{\partial}_b$ respectively.

By Hodge duality between forms of complementary degree, we need the double constraint $k \geq q$ (for the positive microlocalization) and $k \leq n - 1 - q$ (for the negative one); this forces $q \leq \frac{n+1}{2}$. For M embedded and orientable, Theorem 1.3 is contained in [R10]. The same is proved in [S10] without the assumption of orientability. The proof of this, as well as of the theorem which follows, is given in Section 2. Let $\mathcal{H}_k = \text{ker} \partial_b \cap \text{ker} \bar{\partial}_b^*$ be the space of harmonic forms of degree k. As a consequence of (1.4), we have that for $q \leq k \leq n - 1 - q$, the space \mathcal{H}_k is finite-dimensional, Δ_b is invertible over \mathcal{H}_k (cf. [N06] Lemma 5.3) and its inverse G_k is a compact operator. When $k = 0$ and $k = n - 1$ it is no longer true that it is finite-dimensional. However, if $q = 1$, we have a result analogous to (1.3) also in the critical degrees $k = 0$ and $k = n - 1$.

Theorem 1.4. Let M be a compact, pseudoconvex CR manifold of hypersurface type of dimension $2n - 1$. Assume that property $(CR - P_q)$ holds for $q = 1$ over a covering $\{U\}$ of M and, in case $n = 2$, make the additional hypothesis that ∂_b has closed range. Then for any ϵ there is C_ϵ such that

$$\|u\|^2 \leq \epsilon(\|\bar{\partial}_b u\|^2 + \|\partial_b u\|^2) + C_\epsilon \|u\|^{-1}$$

for any $u \in \mathcal{H}_k^\perp$, $k = 0$ and $k = n - 1$.

In particular, G_k is compact for $k = 0$ and $k = n - 1$.

For $n \geq 3$ and M a boundary of a domain in \mathbb{C}^n, resp. embedded and orientable, Theorem 1.3 is contained in [RS08] (resp. [S10]).

2. Proofs

Proof of Theorem 1.3. We choose a local patch U where a local frame of vector fields is found for which (1.1) is fulfilled. The key point is to specify the convenient choices of q_o and φ in (1.1). Let $1 = \psi^+ + \psi^- + \psi^0$ be a conic, smooth partition of the unity in the space \mathbb{R}^{2n-1} dual to the space in which U is identified in local coordinates. Let $\Psi_{\bar{\xi}}$ be the pseudodifferential operators with symbols $\psi_{\bar{\xi}}$ and let $id = \psi^+ \Psi^+ \ast + \psi^- \Psi^- \ast + \psi^0 \Psi^0 \ast$ be the corresponding microlocal decomposition of the identity. For a cut off function $\zeta \in C^\infty_c(U)$ we decompose a form u as

$$u^\zeta = \zeta \Psi_{\bar{\xi}} u \quad u \in \mathcal{E}_c^\infty(U), \quad \zeta|_{\text{supp}\ u} \equiv 1.$$

For u^+ we choose $q_o = 0$ and $\varphi = \varphi^+$. We also need to go back to Remark 1.2. Now, if α has been chosen so that (1.3) is fulfilled, we remove T from our scalar products observing that, for large ξ, we have $\xi^{2n+1} > a_\epsilon$ over $\text{supp} \psi^+$. In the same
way as in Lemma 4.12 of [N06], we conclude that for \(k \geq q \)
\[
\sum'_{|K|=k-1} \sum_{i,j=1,...,n-1} \left((c_{ij} T + \varphi^e_{ij}) u_{iK}^+, u_{jK}^+ \right)_{\varphi^e}
\geq \sum'_{|K|=k-1} \sum_{i,j=1,...,n-1} \left((a_c c_{ij} + \varphi^e_{ij}) u_{iK}^+, u_{jK}^+ \right)_{\varphi^e}
- C \| u^+ \|^2_{\varphi^e} - C_e \| u^+ \|^2_{-1,\varphi^e} - C_e \| \zeta^2 \tilde{\Psi}^0 u^+ \|^2_{\varphi^e}
\geq \epsilon^{-1} \| u^+ \|^2_{\varphi^e} - C_e \| u^+ \|^2_{-1,\varphi^e} - C_e \| \zeta^2 \tilde{\Psi}^0 u^+ \|^2_{\varphi^e},
\]
where \(\tilde{\Psi}^0 \succ \Psi^0 \) and \(\zeta^2 \succ \zeta^1 \) in the sense that \(\tilde{\Psi}^0|_{\supp \Psi^0} \equiv 1 \) and \(\zeta^2|_{\supp \zeta^1} \equiv 1 \) respectively. (Here \(\| u^+ \|_{-1,\varphi^e} = \| \Lambda^{-1} u^+ \|_{\varphi^e} \), where \(\Lambda^{-1} \) is the standard tangential pseudodifferential operator of order \(-1\) in the local patch \(U \).) Note that there is an additional term \(-C_e \| u^+ \|^2_{1,\varphi^e}\) with respect to [N06]. The reason is that \((c_{ij} \xi_{2n-1} + \varphi^e_{ij})\) can get negative values, even on \(\supp \psi^+ \), when \(\xi_{2n-1} < a_c \). Integration in this compact region produces the above error term. It follows that
\[
(\chi(\varphi^e))_{ij} = \chi \varphi^e_{ij} + \tilde{\chi}|\varphi^e_j|^2 \kappa_{ij},
\]
where \(\kappa_{ij} \) is the Kronecker symbol. We also notice that
\[
|\tilde{\partial}_{b,\chi} \varphi^e_j| u_j^2 \leq 2 |\tilde{\partial}_{b}^e| u_j^2 + 2 \chi^2 \sum'_{|K|=k-1} |\sum_{j=1}^{n-1} \varphi^e_j u_{jK}|^2.
\]
Remember that \(\{ \varphi^e \} \) are uniformly bounded by 1. Thus, if we choose \(\chi = \frac{1}{4} e^{(t-1)} \), then we have that \(\tilde{\chi} \geq 2 \chi^2 \) for \(t = \varphi^e \). For this reason, with this modified weight, we can replace the weighted adjoint \(\tilde{\partial}_{b,\varphi}^e \) by the unweighted \(\tilde{\partial}_{b}^e \) in (2.2). By the uniform boundedness of the weights, we can also remove them from the norms and end up with the estimate
\[
(2.3) \quad \| u^+ \|^2 \leq \epsilon \left(\| \tilde{\partial}_{b} u^+ \|^2 + \| \tilde{\partial}_{b}^e u^+ \|^2 \right) + C_e \| u^+ \|^2_{-1} + C_e \| \zeta^2 \tilde{\Psi}^0 u^+ \|^2, \quad k = q, \ldots, n-1.
\]
For \(u^- \), we choose \(q_0 = n-1 \) and \(\varphi = -\varphi^e \). Observe that for \(|\xi| \) large we have \(-\xi_{2n-1} \geq a_c \) over \(\supp \psi^- \) (cf. [N06], Lemma 4.13). Thus, we have in the current case, for \(k \leq n-1-q \),
\[
\sum'_{|K|=k-1} \sum_{i,j=1,...,n-1} \left((c_{ij} T - \varphi^-_{ij}) u_{iK}^-, u_{jK}^- \right)_{-\varphi^-} - \sum'_{|J|=k} \sum_{j=1}^{n-1} \left((c_{ij} T - \varphi^-_{ij}) u_{iJ}^-, u_{jJ}^- \right)_{-\varphi^-}
\geq - \sum'_{|K|=k-1} \sum_{i,j=1,...,n-1} \left((a_c c_{ij} + \varphi^-_{ij}) u_{iK}^-, u_{jK}^- \right)_{-\varphi^-}
+ \sum'_{|J|=k} \sum_{j=1}^{n-1} \left((a_c c_{ij} + \varphi^-_{ij}) u_{iJ}^-, u_{jJ}^- \right)_{-\varphi^-}
- C \| u^- \|^2_{\varphi^-} - C_e \| u^- \|^2_{-1,\varphi^-} - C_e \| \zeta^2 \tilde{\Psi}^0 u^- \|^2_{\varphi^-}
\geq \epsilon^{-1} \| u^- \|^2_{\varphi^-} - C \| u^- \|^2_{\varphi^-} - C_e \| u^- \|^2_{-1,\varphi^-} - C_e \| \zeta^2 \tilde{\Psi}^0 u^- \|^2_{\varphi^-}.
\]
Thus, we get the analogue of (2.2) for u^+ replaced by u^- and, again removing the weight from the adjoint $\bar{\partial}_{b,\phi^*}$ and from the norms, we conclude that
\begin{equation}
\|u^\sim\|_2^2 \leq \epsilon \left(\|\bar{\partial}_b u^\sim\|_2^2 + \|\bar{\partial}_{b,\phi^*} u^\sim\|_2^2 \right) + C_\epsilon \|u^\sim\|_{-1,\phi^*}^2 + C_\epsilon \|\zeta^2 \bar{\Psi}^0 u\|_2^2 , \quad k = 0, \ldots, n - 1 - q.
\end{equation}
In addition to (2.3) and (2.4), we have elliptic estimates for u^0:
\begin{equation}
\|u^0\|_2^2 \leq \|\bar{\partial}_b u\|_2^2 + \|\bar{\partial}_{b,\phi^*} u^0\|_2^2 + \|u\|_{-1}^2.
\end{equation}
The same estimate also holds for u^0 replaced by $\zeta^2 \bar{\Psi}^0 u$. We put together (2.3), (2.4) and (2.5) and notice that
\begin{equation}
\|\bar{\partial}_b (\zeta^1 \bar{\Psi}^0 u)\|_2^2 \leq \|\zeta^1 \bar{\Psi}^0 \bar{\partial}_b u\|_2^2 + \|\bar{\partial}_b, \zeta^1 \bar{\Psi}^0\| u\|_2^2 \leq \|\zeta^1 \bar{\Psi}^0 \bar{\partial}_b u\|_2^2 + \|\zeta^2 \bar{\Psi}^0 u\|_2^2 + \|\zeta^2 \bar{\Psi}^0 u\|_2^2,
\end{equation}
for $\zeta^2 \supset \zeta^1$ and $\bar{\Psi}^0 \supset \Psi^0$. A similar estimate holds for $\bar{\partial}_b$ replaced by $\bar{\partial}_{b,\phi^*}$. Since $\zeta^1|_{\text{supp } u} \equiv 1$, then
\begin{equation}
\|u\|_2^2 \leq \sum_{+,\ldots, 0} \|\zeta^1 \bar{\Psi}^0 u\|_2^2 + O p^{-\infty} (u) \leq \epsilon \sum_{+,\ldots, 0} \left(\|\bar{\partial}_b u\|_2^2 + \|\bar{\partial}_{b,\phi^*} u\|_2^2 \right) + C_\epsilon \|u\|_{-1}^2,
\end{equation}
and therefore
\begin{equation}
\|u\|_2^2 \leq \epsilon \left(\|\bar{\partial}_b u\|_2^2 + \|\bar{\partial}_{b,\phi^*} u\|_2^2 \right) + C_\epsilon \|u\|_{-1}^2 , \quad q \leq k \leq n - 1 - q.
\end{equation}
We now consider u globally defined on the whole M instead of a local patch U. To pass from local to global compactness estimates is immediate (cf. e. g. [10]). We cover M by $\{U_\nu\}$ so that in each patch there is a basis of forms in which the basic estimate holds. In the identification of U_ν to \mathbb{R}^{2n-1}, we suppose that the microlocal decomposition by the operators $\bar{\Psi}^0$ which occur in (2.6) is well defined. We then get (2.7) and apply it to a decomposition $u = \sum_\nu \zeta_\nu u$ for a partition of the unity $\sum_\nu \zeta_\nu = 1$ on M. We point out that we first take summation over $+, -, 0$ on each patch U_ν and then summation over ν; this is why orientability of M is needless.

We observe that $[\bar{\partial}_b, \zeta_\nu]$ and $[\bar{\partial}_{b,\phi^*}, \zeta_\nu]$ are 0-order operators and, since they come with a factor of ϵ, they are absorbed in the left side of (2.7); thus (2.7) holds for any $u \in B^k$. Finally, we use the density of smooth forms B^k into Sobolev forms $(H^1)^k$ of $D^k_{\bar{\partial}_b} \cap D^k_{\bar{\partial}_{b,\phi^*}}$ for the graph norm and get (2.7). The proof is complete.

Proof of Theorem 1.4 We prove estimates in degree 0 (those in degree $n - 1$ being similar). We first discuss the case $n > 2$. We make repeated use of (2.7) in degree 1. This first implies that $\bar{\partial}_b^* \bar{\partial}_b$ has closed range on 1-forms, that is,
\begin{equation}
\mathcal{H}^{0,1} = (\ker \bar{\partial}_b) \perp = \text{range } \bar{\partial}_b^*.
\end{equation}
(Thus, if $u \in \mathcal{H}^{0,1}$, then there exists a solution $v \in (L^2)^1$ to the equation $\bar{\partial}_b^* v = u$. Moreover, we can choose v belonging to $(Ker(\bar{\partial}_b^*) \perp)$. This is a consequence of the following estimate:
\begin{equation}
\|v\|_0^2 \leq \|\bar{\partial}_b^* v\|_0^2 \quad \text{for any } v \in (\ker \bar{\partial}_b^*) \perp.
\end{equation}
This can be proved by contradiction. If \((2.8)\) is violated, there exists a sequence \(v_\nu \in (\ker \bar{\partial}_b^*)^\perp\) such that \(\|v_\nu\|^2_0 \equiv 1\) and \(\|\bar{\partial}_b^* v_\nu\|_0 \to 0\). Take a subsequential \(L^2\)-weak limit \(v_0\) of \(v_\nu\); it satisfies \(v_0 \in \text{Ker}(\bar{\partial}_b^*) \cap (\text{Ker}(\bar{\partial}_b^*))^\perp\) and in particular \(\|v_0\|_{-1} \to 0\). This violates (2.7) and proves (2.8). We also have

\[(2.9)\]
\[
\|v\|_{-1}^2 \leq \epsilon \|\bar{\partial}_b^* v\|_2^2 + c_\epsilon \|\bar{\partial}_b^* v\|_{-1}^2,
\]
for any \(v \in (\ker \bar{\partial}_b^*)^\perp\).

The argument is similar. If \((2.9)\) is violated, there is a sequence \(v_\nu \in (\ker \bar{\partial}_b^*)^\perp\) such that \(\|v_\nu\|_{-1} \equiv 1\), \(\|\bar{\partial}_b^* v_\nu\| \to 0\) and \(\|\bar{\partial}_b^* v_\nu\|_0 \leq c\). By (2.7), \(\|v_\nu\|_0 \leq C\); hence there is a subsequential \(L^2\)-weak limit \(v_\nu \to v_0 \in (\text{Ker}(\bar{\partial}_b^*))^\perp \cap \text{Ker}(\bar{\partial}_b^*)\); thus \(v_0 = 0\) and \(\|v_\nu\|_{-1} \to 0\), a contradiction.

We now point out that \((\text{Ker}(\bar{\partial})^\dagger) = \text{range}(\bar{\partial}) \subset \text{Ker}(\partial);\) in particular, our solution \(v\) satisfies \(\bar{\partial} v = 0\). We are ready to conclude the proof for \(n > 2\). We use the notation \(\mathcal{H}\) and \(\mathcal{E}\) for a large and small constant respectively. We have for any function \(u \in \mathcal{H}\)

\[
\|u\|^2 = (u, \bar{\partial}_b^* v)
\]
\[
= (\bar{\partial}_b u, v)
\]
\[
\leq \|\bar{\partial}_b u\| \|v\|_2^2 + \|\bar{\partial}_b v\| \|u\|_1^2 + c_\epsilon \|v\|_{-1}^2
\]
(2.10)
\[
\leq \|\bar{\partial}_b u\| \|v\|_2^2 + \|\bar{\partial}_b v\| \|u\|_{-1}^2
\]
\[
\leq c_1 \epsilon^2 |\bar{\partial}_b u|^2 + s c_1 \|u\|^2_2 + l c_2 c_1^2 \|u\|_{-1}^2 + s c_2 \|\bar{\partial}_b u\|^2_2
\]
\[
\leq \epsilon' \|\bar{\partial}_b u\|^2 + c_\epsilon \|u\|_{-1}^2 + s c_1 \|u\|^2_2,
\]
for \(\epsilon' = l c_1 \epsilon^2 + s c_2\) and \(c_\epsilon = l c_2 c_1^2\). By choosing \(c_1\) so that \(s c_1 \|u\|^2_2\) is absorbed in the left, (2.10) yields (2.7) for \(u\) in degree 0. This concludes the proof of the case \(n > 2\) for functions.

Let \(n = 2\). We have only estimates for positively microlocalized 1-forms and for negatively microlocalized functions. We have to show how to get estimates for positively microlocalized functions (the argument for negative 1-forms being similar). We use our extra assumption of closed range for \(\bar{\partial}_b\); thus for any \(u \in (\ker \bar{\partial}_b)^\perp\) there is \(v \in (\ker \bar{\partial}_b^*)^\perp\) such that \(\bar{\partial}_b^* v = u\). On each \(U_\nu\) we consider the positive microlocalization \(\Psi^+\), take a pair of cut-off functions \(\zeta_\nu, \zeta_\nu^0 \in C^\infty_\text{supp}(U_\nu)\) with \(\zeta_\nu^0|_{\text{supp} \zeta_\nu} \equiv 1\), and define \(\Psi^+_\nu := \zeta_\nu^0 \Psi^+ \zeta_\nu\). Note that the commutators \([\bar{\partial}_b^+, \Psi^+_\nu]\) and \([\bar{\partial}_b, \Psi^+_\nu]\) are operators with symbols of types \(\zeta_\nu^0 \zeta_\nu^+\zeta_\nu, \zeta_\nu^0 \zeta_\nu^+ \zeta_\nu^0\) and \(\zeta_\nu^0 \zeta_\nu^+ \zeta_\nu^0\). All these symbols have support contained in the positive half-space \(\xi_{2n-1} > 0\), and hence we have compactness estimates for 1-forms if their coefficients are subjected to the action of the corresponding pseudodifferential operators. We denote by \(\Phi^+\nu\) all these operators coming from commutators. We have

\[
\|\Phi^+\nu \| \leq \epsilon \|\bar{\partial}_b^+ \Phi^+\nu \| + c_\epsilon \|\Phi^+\nu\|_{-1} + c_\epsilon \|\zeta_\nu^0 \zeta_\nu^+ \zeta_\nu\|_1
\]
(2.11)
\[
\leq \epsilon \|\Phi^+\nu \| + c_\epsilon \|\Phi^+\nu\|_{-1} + c_\epsilon \|\zeta_\nu^0 \zeta_\nu^+ \zeta_\nu\|_{1}\]
\[
\leq \epsilon \|u\| + c_\epsilon \|u\|_{-1}.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The same estimate also holds for $\|\Phi^+_\nu u\|$. It follows that

$$
\|\Phi^+_\nu u\|^2 = (\Phi^+_\nu u, \Phi^+_\nu \bar{\partial} v)
= (\|\Phi^+_\nu \bar{\partial} u\| + \|\Phi^+_\nu u\|)(\|\Phi^+_\nu v\|)
\leq \left(\|\Phi^+_\nu \bar{\partial} u\| + \|\Phi^+_\nu u\| \right) \epsilon \|u\| + c_\epsilon \|u\|^{-1}
\leq \epsilon \|\Phi^+_\nu \bar{\partial} u\| \|u\| + c_\epsilon \|\Phi^+_\nu u\| \|u\|^{-1} + \epsilon \|u\|^2 + c_\epsilon \|u\|^{-1} \|u\|
\leq l c_1 \epsilon^2 \|\Phi^+_\nu \bar{\partial} b u\|^2 + sc_1 \|u\|^2 + sc_2 \|\Phi^+_\nu \bar{\partial} b u\|^2 + lc_2 \epsilon^2 \|u\|^2_{-1} + \epsilon \|u\|^2 + sc_3 \|u\|^2_{-1} + lc_3 \epsilon^2 \|u\|^2_{-1}
\leq \epsilon' \|\Phi^+_\nu \bar{\partial} b u\|^2 + sc_4 \|u\|^2 + c_{\epsilon'} \|u\|^2_{-1},
$$

where $\epsilon' = l c_1 \epsilon^2 + sc_3$, $c_{\epsilon'} = lc_2 \epsilon^2 + lc_3 \epsilon^2$ and $sc_4 = sc_1 + \epsilon + sc_2$. We have to recall now that the same estimate as (2.12) also holds for $\|\Phi^-_\nu u\|^2$ (the one for $\|\Phi^0_\nu u\|^2$ being trivial by ellipticity). Taking summation over $+, -$ and 0 on each U_ν, we get

$$
\|\zeta_\nu u\|^2 \leq \epsilon (1 + \epsilon') \|\bar{\partial} b u\|^2 + c_\epsilon \|u\|^2_{-1} + sc \|u\|^2.
$$

We now take summation over ν and choose sc so that the related term is absorbed by $\sum_{\nu} \|\zeta_\nu u\|^2 \sim \|u\|^2$ and end up with

$$
\|u\|^2 \leq \epsilon \|\bar{\partial} b u\|^2 + c_\epsilon \|u\|^2_{-1}
$$
for any function u. \hfill \square

ACKNOWLEDGEMENT

The authors are grateful to Emil Straube for fruitful discussions.

REFERENCES

Tan Tao University, Tan Tao University Avenue, Duc Hoa District, Long An Province, Vietnam
E-mail address: khanh.tran@ttu.edu.vn

Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
E-mail address: pinton@math.unipd.it

Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
E-mail address: zampieri@math.unipd.it