Bloch-to-BMOA compositions on complex balls
HTML articles powered by AMS MathViewer
- by Evgueni Doubtsov
- Proc. Amer. Math. Soc. 140 (2012), 4217-4225
- DOI: https://doi.org/10.1090/S0002-9939-2012-11280-8
- Published electronically: April 12, 2012
- PDF | Request permission
Abstract:
Let $\varphi$ be a holomorphic map between complex unit balls. We characterize those $\varphi$ for which the composition operator $f\mapsto f\circ \varphi$ maps the Bloch space into $\mathrm {BMOA}$.References
- A. B. Aleksandrov, Function theory in the ball, Current problems in mathematics. Fundamental directions, Vol. 8, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, pp. 115–190, 274 (Russian). MR 850487
- A. B. Aleksandrov, Proper holomorphic mappings from the ball to the polydisk, Dokl. Akad. Nauk SSSR 286 (1986), no. 1, 11–15 (Russian). MR 822088
- Oscar Blasco, Mikael Lindström, and Jari Taskinen, Bloch-to-BMOA compositions in several complex variables, Complex Var. Theory Appl. 50 (2005), no. 14, 1061–1080. MR 2175841, DOI 10.1080/02781070500277672
- Boo Rim Choe, Wade Ramey, and David Ullrich, Bloch-to-BMOA pullbacks on the disk, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2987–2996. MR 1396971, DOI 10.1090/S0002-9939-97-03873-2
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- E. G. Kwon, On analytic functions of Bergman BMO in the ball, Canad. Math. Bull. 42 (1999), no. 1, 97–103. MR 1695858, DOI 10.4153/CMB-1999-011-3
- E. G. Kwon, Hyperbolic $g$-function and Bloch pullback operators, J. Math. Anal. Appl. 309 (2005), no. 2, 626–637. MR 2154140, DOI 10.1016/j.jmaa.2004.10.042
- Shamil Makhmutov and Maria Tjani, Composition operators on some Möbius invariant Banach spaces, Bull. Austral. Math. Soc. 62 (2000), no. 1, 1–19. MR 1775882, DOI 10.1017/S0004972700018426
- Wade Ramey and David Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), no. 4, 591–606. MR 1135533, DOI 10.1007/BF01445229
- J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), no. 1, 107–116. MR 684495, DOI 10.1090/S0002-9947-1983-0684495-9
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Wayne Smith and Ruhan Zhao, Composition operators mapping into the $Q_p$ spaces, Analysis 17 (1997), no. 2-3, 239–263. MR 1486367, DOI 10.1524/anly.1997.17.23.239
- Shinji Yamashita, Holomorphic functions of hyperbolically bounded mean oscillation, Boll. Un. Mat. Ital. B (6) 5 (1986), no. 3, 983–1000 (English, with Italian summary). MR 871709
- Kehe Zhu, Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005. MR 2115155
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- Evgueni Doubtsov
- Affiliation: St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
- MR Author ID: 361869
- Email: dubtsov@pdmi.ras.ru
- Received by editor(s): January 28, 2011
- Received by editor(s) in revised form: May 25, 2011
- Published electronically: April 12, 2012
- Additional Notes: This research was supported by RFBR (grant No. 11-01-00526)
- Communicated by: Richard Rochberg
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 4217-4225
- MSC (2010): Primary 32A18, 32A37; Secondary 32H02, 47B33
- DOI: https://doi.org/10.1090/S0002-9939-2012-11280-8
- MathSciNet review: 2957212