Auslander-Reiten components determined by their composition factors
HTML articles powered by AMS MathViewer
- by Alicja Jaworska, Piotr Malicki and Andrzej Skowroński
- Proc. Amer. Math. Soc. 140 (2012), 4131-4140
- DOI: https://doi.org/10.1090/S0002-9939-2012-11298-5
- Published electronically: April 26, 2012
- PDF | Request permission
Abstract:
We provide sufficient conditions for a component of the Auslander-Reiten quiver of an Artin algebra to be determined by the composition factors of its indecomposable modules.References
- Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. Techniques of representation theory. MR 2197389, DOI 10.1017/CBO9780511614309
- Maurice Auslander, Representation theory of Artin algebras. I, II, Comm. Algebra 1 (1974), 177–268; ibid. 1 (1974), 269–310. MR 349747, DOI 10.1080/00927877408548230
- Maurice Auslander and Idun Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), no. 2, 280–301. MR 784524
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422, DOI 10.1017/CBO9780511623608
- K. Erdmann, O. Kerner, and A. Skowroński, Self-injective algebras of wild tilted type, J. Pure Appl. Algebra 149 (2000), no. 2, 127–176. MR 1757729, DOI 10.1016/S0022-4049(00)00035-9
- Dieter Happel, Composition factors for indecomposable modules, Proc. Amer. Math. Soc. 86 (1982), no. 1, 29–31. MR 663860, DOI 10.1090/S0002-9939-1982-0663860-4
- Dieter Happel and Shi Ping Liu, Module categories without short cycles are of finite type, Proc. Amer. Math. Soc. 120 (1994), no. 2, 371–375. MR 1164144, DOI 10.1090/S0002-9939-1994-1164144-9
- Dieter Happel and Claus Michael Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 399–443. MR 675063, DOI 10.1090/S0002-9947-1982-0675063-2
- A. Jaworska, P. Malicki and A. Skowroński, On Auslander-Reiten components of algebras without external short paths, J. Lond. Math. Soc. (2) 85 (2012), 245–268.
- Otto Kerner and Andrzej Skowroński, Quasitilted one-point extensions of wild hereditary algebras, J. Algebra 244 (2001), no. 2, 785–827. MR 1859048, DOI 10.1006/jabr.2001.8922
- Helmut Lenzing and José Antonio de la Peña, Concealed-canonical algebras and separating tubular families, Proc. London Math. Soc. (3) 78 (1999), no. 3, 513–540. MR 1674837, DOI 10.1112/S0024611599001872
- Helmut Lenzing and Andrzej Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math. 71 (1996), no. 2, 161–181. MR 1414820, DOI 10.4064/cm-71-2-161-181
- Shi Ping Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. (2) 45 (1992), no. 1, 32–54. MR 1157550, DOI 10.1112/jlms/s2-45.1.32
- Shi Ping Liu, Semi-stable components of an Auslander-Reiten quiver, J. London Math. Soc. (2) 47 (1993), no. 3, 405–416. MR 1214905, DOI 10.1112/jlms/s2-47.3.405
- I. Reiten and A. Skowroński, Sincere stable tubes, J. Algebra 232 (2000), no. 1, 64–75. MR 1783913, DOI 10.1006/jabr.1999.8386
- I. Reiten, A. Skowroński, and S. O. Smalø, Short chains and short cycles of modules, Proc. Amer. Math. Soc. 117 (1993), no. 2, 343–354. MR 1136238, DOI 10.1090/S0002-9939-1993-1136238-4
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Claus Michael Ringel, The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. Ser. B 9 (1988), no. 1, 1–18. A Chinese summary appears in Chinese Ann. Math. Ser. A 9 (1988), no. 1, 102. MR 943675
- Claus Michael Ringel, The canonical algebras, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 407–432. With an appendix by William Crawley-Boevey. MR 1171247
- Daniel Simson and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 2, London Mathematical Society Student Texts, vol. 71, Cambridge University Press, Cambridge, 2007. Tubes and concealed algebras of Euclidean type. MR 2360503
- Daniel Simson and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 3, London Mathematical Society Student Texts, vol. 72, Cambridge University Press, Cambridge, 2007. Representation-infinite tilted algebras. MR 2382332
- Andrzej Skowroński, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46 (1994), no. 3, 517–543. MR 1276836, DOI 10.2969/jmsj/04630517
- Andrzej Skowroński, On the composition factors of periodic modules, J. London Math. Soc. (2) 49 (1994), no. 3, 477–492. MR 1271544, DOI 10.1112/jlms/49.3.477
- Andrzej Skowroński, Cycles in module categories, Finite-dimensional algebras and related topics (Ottawa, ON, 1992) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 309–345. MR 1308994
- Andrzej Skowroński, On omnipresent tubular families of modules, Representation theory of algebras (Cocoyoc, 1994) CMS Conf. Proc., vol. 18, Amer. Math. Soc., Providence, RI, 1996, pp. 641–657. MR 1388078
- Andrzej Skowroński, A construction of complex syzygy periodic modules over symmetric algebras, Colloq. Math. 103 (2005), no. 1, 61–69. MR 2148950, DOI 10.4064/cm103-1-8
- Ying Bo Zhang, The structure of stable components, Canad. J. Math. 43 (1991), no. 3, 652–672. MR 1118014, DOI 10.4153/CJM-1991-038-1
Bibliographic Information
- Alicja Jaworska
- Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- Email: jaworska@mat.uni.torun.pl
- Piotr Malicki
- Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- MR Author ID: 613525
- ORCID: 0000-0001-9747-9019
- Email: pmalicki@mat.uni.torun.pl
- Andrzej Skowroński
- Affiliation: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina 12/18, 87-100 Toruń, Poland
- Email: skowron@mat.uni.torun.pl
- Received by editor(s): December 10, 2010
- Received by editor(s) in revised form: April 19, 2011, and June 3, 2011
- Published electronically: April 26, 2012
- Additional Notes: This research was supported by the Research Grant N N201 269135 of the Polish Ministry of Science and Higher Education.
- Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 140 (2012), 4131-4140
- MSC (2010): Primary 16G10, 16G70; Secondary 16E20
- DOI: https://doi.org/10.1090/S0002-9939-2012-11298-5
- MathSciNet review: 2957203