Kazhdan’s property $(T)$ with respect to non-commutative $L_{p}$-spaces
HTML articles powered by AMS MathViewer
- by Baptiste Olivier
- Proc. Amer. Math. Soc. 140 (2012), 4259-4269
- DOI: https://doi.org/10.1090/S0002-9939-2012-11481-9
- Published electronically: April 19, 2012
- PDF | Request permission
Abstract:
We show that a group with Kazhdan’s property $(T)$ has property $(T_{B})$ for $B$ the Haagerup non-commutative $L_{p}(\mathcal {M})$-space associated with a von Neumann algebra $\mathcal {M}$, $1<p<\infty$. We deduce that higher rank groups have property $F_{L_{p}(\mathcal {M})}$.References
- Uri Bader, Alex Furman, Tsachik Gelander, and Nicolas Monod, Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), no. 1, 57–105. MR 2316269, DOI 10.1007/s11511-007-0013-0
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- J. Dixmier, Formes linéaires sur un anneau d’opérateurs, Bull. Soc. Math. France 81 (1953), 9–39 (French). MR 59485
- Uffe Haagerup, $L^{p}$-spaces associated with an arbitrary von Neumann algebra, Algèbres d’opérateurs et leurs applications en physique mathématique (Proc. Colloq., Marseille, 1977) Colloq. Internat. CNRS, vol. 274, CNRS, Paris, 1979, pp. 175–184 (English, with French summary). MR 560633
- Marius Junge, Zhong-Jin Ruan, and David Sherman, A classification for 2-isometries of noncommutative $L_p$-spaces, Israel J. Math. 150 (2005), 285–314. MR 2255812, DOI 10.1007/BF02762384
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- M. Puschnigg, Finitely summable Fredholm modules over higher rank groups and lattices, preprint, arXiv:0806.2759 (2008).
- Yves Raynaud, On ultrapowers of non commutative $L_p$ spaces, J. Operator Theory 48 (2002), no. 1, 41–68. MR 1926043
- David Sherman, Noncommutative $L^p$ structure encodes exactly Jordan structure, J. Funct. Anal. 221 (2005), no. 1, 150–166. MR 2124900, DOI 10.1016/j.jfa.2004.09.003
- Erling Størmer, On the Jordan structure of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 120 (1965), 438–447. MR 185463, DOI 10.1090/S0002-9947-1965-0185463-5
- Keiichi Watanabe, On isometries between noncommutative $L^p$-spaces associated with arbitrary von Neumann algebras, J. Operator Theory 28 (1992), no. 2, 267–279. MR 1273046
- Keiichi Watanabe, An application of orthoisomorphisms to non-commutative $L^p$-isometries, Publ. Res. Inst. Math. Sci. 32 (1996), no. 3, 493–502. MR 1409799, DOI 10.2977/prims/1195162853
- F. J. Yeadon, Non-commutative $L^{p}$-spaces, Math. Proc. Cambridge Philos. Soc. 77 (1975), 91–102. MR 353008, DOI 10.1017/S0305004100049434
- F. J. Yeadon, Isometries of noncommutative $L^{p}$-spaces, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 1, 41–50. MR 611284, DOI 10.1017/S0305004100058515
Bibliographic Information
- Baptiste Olivier
- Affiliation: Institut de Recherche Mathématiques de Rennes, Université de Rennes 1, Rennes, France
- Received by editor(s): February 7, 2011
- Received by editor(s) in revised form: May 31, 2011
- Published electronically: April 19, 2012
- Communicated by: Marius Junge
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 140 (2012), 4259-4269
- MSC (2010): Primary 46L52
- DOI: https://doi.org/10.1090/S0002-9939-2012-11481-9
- MathSciNet review: 2957217