ON PREHOMOGENEITY OF A RANK VARIETY

MASAYA OUCHI, MICHIO HAMADA, AND TATSUO KIMURA

(Communicated by Lev Borisov)

Abstract. If a linear algebraic group G acts on $M(m,n)$, then it also acts on a rank variety $M^{(r)}(m,n) = \{X \in M(m,n) \mid \text{rank } X = r\}$. In this paper, we give the necessary and sufficient condition that this variety has a Zariski-dense G-orbit. We consider everything over the complex number field \mathbb{C}.

INTRODUCTION

Let G be a linear algebraic group. Let $\rho : G \to GL(m)$ and $\sigma : G \to GL(n)$ be its rational representations over \mathbb{C}. Then G acts on $M(m,n)$ by $\rho \otimes \sigma$, i.e., $X \mapsto \rho(g)X^t \sigma(g) \ (X \in M(m,n), \ g \in G)$. By this action, G also acts on a rank variety $M^{(r)}(m,n) = \{X \in M(m,n) \mid \text{rank } X = r\}$. On the other hand, if a rational representation $\tau : H \to GL(V)$ of a linear algebraic group H on a finite-dimensional vector space V has a Zariski-dense H-orbit, we call a triplet (H, τ, V) a prehomogeneous vector space (abbrev. PV). A point of the Zariski-dense H-orbit is called a generic point, and the isotropy subgroup at a generic point is called a generic isotropy subgroup. For the basic facts of PVs, see [K]. In this paper, we shall prove the following theorem.

Theorem 0.1. The following assertions are equivalent.

1. $M^{(r)}(m,n)$ has a Zariski-dense G-orbit by the action $\rho \otimes \sigma$.
2. $(G \times GL(r), \rho \otimes \Lambda_1 + \sigma \otimes \Lambda_1^*, \ M(m,r) \oplus M(n,r))$ is a PV.

Here the action of (2) is given by $(X,Y) \mapsto (\rho(g)X^tA, \sigma(g)YA^{-1})$ for $(X,Y) \in M(m,r) \oplus M(n,r))$ and $(g,A) \in G \times GL(r)$. Note that we have $m \geq r$ and $n \geq r$ in (2).

1. Proof of theorem

The following lemma is the key for our proof.

Lemma 1.1 (M. Sato). Assume that an algebraic group G acts on both of two irreducible algebraic varieties W and W'. Let $\varphi : W \to W'$ be a morphism satisfying

1. $\varphi(gw) = g\varphi(w) \ (g \in G, w \in W),$
2. $\varphi(W) = W'.

Received by the editors May 26, 2011.

2010 Mathematics Subject Classification. Primary 11S90; Secondary 15A03.

Key words and phrases. Rank, Zariski-dense orbit, prehomogeneous vector space.
Then the following assertions are equivalent:

(1) \(W = \overline{G \cdot w} \) for some \(w \in W \); that is, \(W \) is \(G \)-prehomogeneous.
(2) (a) \(W' = \overline{G \cdot w'} \) for some \(w' \in W' \).
 (b) For the above point \(w' \in W' \) in (a), there exists a point \(w \in \varphi^{-1}(w') \) such that \(\varphi^{-1}(w') = \overline{Gw \cdot w} \), where \(Gw = \{ g \in G : gw' = w' \} \) is the isotropy subgroup of \(G \) at \(w' \).

Proof. For the proof, see Lemmas 7.2 and 7.6 in [K]. \(\square \)

Now we shall prove Theorem 0.1. Put \(W = \{(X, Y) \in M(m, r) \oplus M(n, r) | \text{rank } X = \text{rank } Y = r \} \). Then clearly \((G \times GL(r), \rho \otimes \Lambda_1 + \sigma \otimes \Lambda_1^*) \), \(M(m, r) \oplus M(n, r) \) is a PV if and only if \(W \) is \(G \times GL(r) \)-prehomogeneous. Note that \(X'Y = r \) for any \((X, Y) \in W \). Hence we have a \((G \times GL(r))\)-equivariant map \(\varphi : W \to M(\rho), (m, n) \) by \((X, Y) \to X'Y \). Note that \(GL(m) \times GL(n) \) also acts on both \(W \) and \(M(\rho), (m, n) \). Since \(\varphi \) is also \((GL(m) \times GL(n))\)-equivariant and \(M(\rho), (m, n) \) is a single \((GL(m) \times GL(n))\)-orbit, we see that \(\varphi \) is surjective. For \(Z_0 = \varphi(X_0, Y_0) \in M(v), (m, n) \), we shall show that the fiber \(\varphi^{-1}(Z_0) \) is a principal \(GL(r)\)-orbit. Assume that \((X, Y) \in \varphi^{-1}(Z_0) \). If \(X = (x_1, \ldots, x_r) \in M(m, r) \), let \(\langle X \rangle \) be an \(r \)-dimensional subspace of \(\mathbb{C}^m \) generated by column vectors \(x_1, \ldots, x_r \). Since we have \(X'Y = (\sum_{j=1}^{r} y_{ij} x_j : \ldots : \sum_{j=1}^{r} y_{nj} x_j) \) for \(Y = (y_{ij}) \) and rank \(X = \text{rank } X'Y = r \), we have \(\langle X \rangle = \langle X'Y \rangle = \langle Z_0 \rangle = \langle X_0, Y_0 \rangle = \langle X_0 \rangle \), and hence there exists uniquely \(A \in GL(r) \) satisfying \(X = X_0 A^t \). Then we have \(X_0 A^t Y_0 = X_0 A^t Y_0 = X_0 A^t Y_0 \) and since rank \(X_0 = r \), we obtain \(Y_0 = A^t Y_0 \), i.e., \(Y = Y_0 A^{-1} \). This shows that the fiber \(\varphi^{-1}(Z_0) \) is a principal \(GL(r)\)-orbit. Since \(GL(r) \) is contained in the isotropy subgroup of \(Z_0 \), by Lemma 1.4 we obtain Theorem 0.1.

Note that (2) in Theorem 0.1 is equivalent to:
(3) \((G \times GL(r), \rho \otimes \Lambda_1, M(m, r)) \) is a PV with a generic isotropy subgroup \(H \), and \((H, \sigma \otimes \Lambda_1^*, M(n, r)) \) is a PV.

Example 1.2. Let \(\rho : Spin(10) \to GL(16) \) be a half-spin representation of the spin group \(Spin(10) \). Then \(Spin(10) \times GL(14) \) acts on \(M(16, 14) \) and \(M(\rho), (16, 14) \) has the Zariski-dense \((Spin(10) \times GL(14))\)-orbit if and only if \(r = 1, 2, 3, 13, 14 \). By (3), \((Spin(10) \times GL(14)) \times GL(r), \) a half-spin rep. \(\otimes 1 \otimes \Lambda_1 + 1 \otimes \Lambda_1 \otimes \Lambda_1^* \), \(M(16, r) \otimes M(14, r)) \) is a PV if and only if \((Spin(10) \times GL(r), \) a half-spin rep. \(\otimes \Lambda_1, M(16, r)) \) is a PV since the latter is a trivial PV (see [K]). So by SK, we have our result. Note that the case \(r = 13 \) (resp. \(r = 14 \)) is a castling transform of the case \(r = 3 \) (resp. \(r = 2 \)).

Remark 1.3. Professors Shigefumi Mori and Yasuo Teranishi proved that (2) in Theorem 0.1 is equivalent to (4) : \(U = \{(X, Y), X'Y \in Grass_r(V(m)) \oplus Grass_s(V(n)) \oplus M(m, n) | (X, Y) \in W \} \) is \(G \)-prehomogeneous, and later Professor Masanobu Taguchi proved that it is equivalent to (5) : \(U' = \{(X, X'Y) \in Grass_r(V(m)) \oplus M(m, n) | (X, Y) \in W \} \) is \(G \)-prehomogeneous (see [KKTI], Remark 1.38).
ON PREHOMOGENEITY OF A RANK VARIETY

REFERENCES

Institute of Mathematics, University of Tsukuba, Ibaraki, 305-8571, Japan
E-mail address: msy2000@math.tsukuba.ac.jp

Institute of Mathematics, University of Tsukuba, Ibaraki, 305-8571, Japan
E-mail address: mhamada@math.tsukuba.ac.jp

Institute of Mathematics, University of Tsukuba, Ibaraki, 305-8571, Japan
E-mail address: kimurata@math.tsukuba.ac.jp