Limits of tangents of quasi-ordinary hypersurfaces
HTML articles powered by AMS MathViewer
- by António Araújo and Orlando Neto
- Proc. Amer. Math. Soc. 141 (2013), 1-11
- DOI: https://doi.org/10.1090/S0002-9939-2012-11126-8
- Published electronically: September 10, 2012
- PDF | Request permission
Abstract:
We compute explicitly the limits of tangents of a quasi-ordinary singularity in terms of its special monomials. We show that the set of limits of tangents of $Y$ is essentially a topological invariant of $Y$.References
- Chunsheng Ban, Auréole of a quasi-ordinary singularity, Proc. Amer. Math. Soc. 120 (1994), no. 2, 393–404. MR 1186128, DOI 10.1090/S0002-9939-1994-1186128-7
- Joseph Lipman, QUASI-ORDINARY SINGULARITIES OF EMBEDDED SURFACES, ProQuest LLC, Ann Arbor, MI, 1965. Thesis (Ph.D.)–Harvard University. MR 2939573
- Joseph Lipman, Topological invariants of quasi-ordinary singularities, Mem. Amer. Math. Soc. 74 (1988), no. 388, 1–107. MR 954947, DOI 10.1090/memo/0388
- Lê Dũng Tráng and Bernard Teissier, Limites d’espaces tangents en géométrie analytique, Comment. Math. Helv. 63 (1988), no. 4, 540–578 (French). MR 966949, DOI 10.1007/BF02566778
- O. Neto, A microlocal Riemann-Hilbert correspondence, Compositio Math. 127 (2001), no. 3, 229–241. MR 1845036, DOI 10.1023/A:1017575902563
- Masaki Kashiwara and Takahiro Kawai, On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), no. 3, 813–979. MR 650216, DOI 10.2977/prims/1195184396
Bibliographic Information
- António Araújo
- Affiliation: DCeT, Universidade Aberta, R. Escola Politecnica 141-147, 1269-001 Lisboa, Portugal – and – CMAF, Universidade de Lisboa, Av. Gama Pinto, 2, 1699-003 Lisboa, Portugal
- Email: ant.arj@gmail.com
- Orlando Neto
- Affiliation: Departamento de Matemática and CMAF, Faculdade de Ciências da Universidade de Lisboa, Av. Gama Pinto, 2, 1699-003 Lisboa, Portugal
- Email: orlando60@gmail.com
- Received by editor(s): March 23, 2010
- Received by editor(s) in revised form: March 7, 2011
- Published electronically: September 10, 2012
- Additional Notes: This research was partially supported by FEDER and FCT-Plurianual 2010.
- Communicated by: Lev Borisov
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 1-11
- MSC (2010): Primary 14B05, 32S05
- DOI: https://doi.org/10.1090/S0002-9939-2012-11126-8
- MathSciNet review: 2988706