Topological method for detecting fixed points of maps homotopic to selfmaps of compact ENRs
HTML articles powered by AMS MathViewer
- by Grzegorz Kosiorowski and Klaudiusz Wójcik
- Proc. Amer. Math. Soc. 141 (2013), 245-252
- DOI: https://doi.org/10.1090/S0002-9939-2012-11295-X
- Published electronically: May 9, 2012
- PDF | Request permission
Abstract:
Assume that $X$ is a metric space and $B\subset X$ is compact. Let $f:B\to X$ be a continuous map homotopic to $g$, the selfmap of $B$. The aim of this paper is to present a method for detecting fixed points of $f$. It is based on the notion of the Ważewski set for the homotopy $F$ between $g$ and $f$.References
- Jerzy Jezierski and Wacław Marzantowicz, Homotopy methods in topological fixed and periodic points theory, Topological Fixed Point Theory and Its Applications, vol. 3, Springer, Dordrecht, 2006. MR 2189944
- Bo Ju Jiang, Lectures on Nielsen fixed point theory, Contemporary Mathematics, vol. 14, American Mathematical Society, Providence, R.I., 1983. MR 685755
- Helga Schirmer, A survey of relative Nielsen fixed point theory, Nielsen theory and dynamical systems (South Hadley, MA, 1992) Contemp. Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 291–309. MR 1243481, DOI 10.1090/conm/152/01329
- Helga Schirmer, On the location of fixed points on pairs of spaces, Topology Appl. 30 (1988), no. 3, 253–266. MR 972697, DOI 10.1016/0166-8641(88)90065-X
- Helga Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986), no. 2, 459–473. MR 831126
- Roman Srzednicki, Periodic and bounded solutions in blocks for time-periodic nonautonomous ordinary differential equations, Nonlinear Anal. 22 (1994), no. 6, 707–737. MR 1270166, DOI 10.1016/0362-546X(94)90223-2
- Roman Srzednicki, Ważewski method and Conley index, Handbook of differential equations, Elsevier/North-Holland, Amsterdam, 2004, pp. 591–684. MR 2166495
- Roman Srzednicki, Klaudiusz Wójcik, and Piotr Zgliczyński, Fixed point results based on the Ważewski method, Handbook of topological fixed point theory, Springer, Dordrecht, 2005, pp. 905–943. MR 2171125, DOI 10.1007/1-4020-3222-6_{2}3
- Xuezhi Zhao, Relative Nielsen theory, Handbook of topological fixed point theory, Springer, Dordrecht, 2005, pp. 659–684. MR 2171120, DOI 10.1007/1-4020-3222-6_{1}8
Bibliographic Information
- Grzegorz Kosiorowski
- Affiliation: Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. Stanisława Łojasiewicza 6, 30-348 Kraków, Poland
- Address at time of publication: Katedra Matematyki Uniwersytetu Ekonomicznego w Krakowie, ul. Rakowicka 27, 31-520 Kraków, Poland
- Email: Grzegorz.Kosiorowski@gmail.com, Grzegorz.Kosiorowski@uek.krakow.pl
- Klaudiusz Wójcik
- Affiliation: Instytut Matematyki Uniwersytetu Jagiellońskiego, ul. Stanisława Łojasiewicza 6, 30-348 Kraków, Poland
- Received by editor(s): November 1, 2010
- Received by editor(s) in revised form: June 3, 2011, and June 9, 2011
- Published electronically: May 9, 2012
- Additional Notes: This work was co-financed with budget funds allocated to education in 2010-2011 as a research project by the grant N N201 411439.
- Communicated by: Yingfei Yi
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 245-252
- MSC (2000): Primary 37C25, 58J20; Secondary 32S50
- DOI: https://doi.org/10.1090/S0002-9939-2012-11295-X
- MathSciNet review: 2988726