Families of quasimodular forms and Jacobi forms: The crank statistic for partitions
HTML articles powered by AMS MathViewer
- by Robert C. Rhoades
- Proc. Amer. Math. Soc. 141 (2013), 29-39
- DOI: https://doi.org/10.1090/S0002-9939-2012-11383-8
- Published electronically: April 30, 2012
- PDF | Request permission
Abstract:
Families of quasimodular forms arise naturally in many situations, such as curve counting on Abelian surfaces and counting ramified covers of orbifolds. In many cases the family of quasimodular forms naturally arises as the coefficients of a Taylor expansion of a Jacobi form. In this paper we give examples of such expansions that arise in the study of partition statistics.
The crank partition statistic has gathered much interest recently. For instance, Atkin and Garvan showed that the generating functions for the moments of the crank statistic are quasimodular forms. The two-variable generating function for the crank partition statistic is a Jacobi form. Exploiting the structure inherent in the Jacobi theta function, we construct explicit expressions for the functions of Atkin and Garvan. Furthermore, this perspective opens the door for further investigation, including a study of the moments in arithmetic progressions. We conduct a thorough study of the crank statistic restricted to a residue class modulo 2.
References
- George E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks, Invent. Math. 169 (2007), no. 1, 37–73. MR 2308850, DOI 10.1007/s00222-007-0043-4
- George E. Andrews and F. G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 167–171. MR 929094, DOI 10.1090/S0273-0979-1988-15637-6
- George A. Andrews and Richard Lewis, The ranks and cranks of partitions moduli 2, 3, and 4, J. Number Theory 85 (2000), no. 1, 74–84. MR 1800302, DOI 10.1006/jnth.2000.2537
- G. E. Andrews and S. Rose, MacMahon’s Sum-of-Divisors Functions, Chebyshev Polynomials, and Quasi-Modular Forms, J. Reine Angew. Math., to appear.
- A. O. L. Atkin and F. G. Garvan, Relations between the ranks and cranks of partitions, Ramanujan J. 7 (2003), no. 1-3, 343–366. Rankin memorial issues. MR 2035811, DOI 10.1023/A:1026219901284
- A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84–106. MR 60535, DOI 10.1112/plms/s3-4.1.84
- Kathrin Bringmann, Frank Garvan, and Karl Mahlburg, Partition statistics and quasiharmonic Maass forms, Int. Math. Res. Not. IMRN 1 (2009), Art. ID rnn124, 63–97. MR 2471296, DOI 10.1093/imrn/rnn124
- Kathrin Bringmann, Karl Mahlburg, and Robert C. Rhoades, Asymptotics for rank and crank moments, Bull. Lond. Math. Soc. 43 (2011), no. 4, 661–672. MR 2820152, DOI 10.1112/blms/bdq129
- K. Bringmann, K. Mahlburg, and R. C. Rhoades, Taylor coefficients of mock Jacobi forms and moments of partition statistics, preprint.
- Kathrin Bringmann and Ken Ono, The $f(q)$ mock theta function conjecture and partition ranks, Invent. Math. 165 (2006), no. 2, 243–266. MR 2231957, DOI 10.1007/s00222-005-0493-5
- Dohoon Choi, Soon-Yi Kang, and Jeremy Lovejoy, Partitions weighted by the parity of the crank, J. Combin. Theory Ser. A 116 (2009), no. 5, 1034–1046. MR 2522417, DOI 10.1016/j.jcta.2009.02.002
- Robbert Dijkgraaf, Mirror symmetry and elliptic curves, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 149–163. MR 1363055, DOI 10.1007/978-1-4612-4264-2_{5}
- F. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10–15.
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Alex Eskin and Andrei Okounkov, Pillowcases and quasimodular forms, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 1–25. MR 2263191, DOI 10.1007/978-0-8176-4532-8_{1}
- F. G. Garvan, New combinatorial interpretations of Ramanujan’s partition congruences mod $5,7$ and $11$, Trans. Amer. Math. Soc. 305 (1988), no. 1, 47–77. MR 920146, DOI 10.1090/S0002-9947-1988-0920146-8
- F. G. Garvan, Higher order spt-functions, Adv. Math. 228 (2011), no. 1, 241–265. MR 2822233, DOI 10.1016/j.aim.2011.05.013
- Masanobu Kaneko and Don Zagier, A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165–172. MR 1363056, DOI 10.1007/978-1-4612-4264-2_{6}
- Marvin I. Knopp, Modular functions in analytic number theory, Markham Publishing Co., Chicago, Ill., 1970. MR 0265287
- Karl Mahlburg, Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Natl. Acad. Sci. USA 102 (2005), no. 43, 15373–15376. MR 2188922, DOI 10.1073/pnas.0506702102
- Stephanie Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London Math. Soc. (3) 93 (2006), no. 2, 304–324. MR 2251155, DOI 10.1112/S0024611506015814
- Don Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991), no. 3, 449–465. MR 1106744, DOI 10.1007/BF01245085
- Don Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono-Bringmann), Astérisque 326 (2009), Exp. No. 986, vii–viii, 143–164 (2010). Séminaire Bourbaki. Vol. 2007/2008. MR 2605321
- S. Zwegers, Mock Theta Functions. Thesis, Utrecht, 2002.
Bibliographic Information
- Robert C. Rhoades
- Affiliation: Department of Mathematics, Stanford University, Stanford, California 94305
- MR Author ID: 762187
- Email: rhoades@math.stanford.edu
- Received by editor(s): June 4, 2011
- Published electronically: April 30, 2012
- Additional Notes: The author is supported by an NSF Mathematical Sciences Postdoctoral Fellowship.
- Communicated by: Ken Ono
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 29-39
- MSC (2010): Primary 11P82, 11P84, 11P83, 11P55, 05A17
- DOI: https://doi.org/10.1090/S0002-9939-2012-11383-8
- MathSciNet review: 2988708