On jets, extensions and characteristic classes II
HTML articles powered by AMS MathViewer
- by Helge Maakestad
- Proc. Amer. Math. Soc. 141 (2013), 151-169
- DOI: https://doi.org/10.1090/S0002-9939-2012-11412-1
- Published electronically: May 22, 2012
- PDF | Request permission
Abstract:
In this paper we define the generalized Atiyah classes $c_{\mathcal {J}}(\mathcal {E})$ and $c_{\mathcal {O}_X}(\mathcal {E})$ of a quasi-coherent sheaf $\mathcal {E}$ with respect to a pair $(\mathcal {I},d)$, where $\mathcal {I}$ is a left and right $\mathcal {O}_X$-module and $d$ a derivation. We relate this class to the structure of left and right modules on the first order jet bundle $\mathcal {J}^1_{\mathcal {I}}(\mathcal {E})$. In the main result of the paper we show $c_{\mathcal {O}_X}(\mathcal {E})=0$ if and only if there is an isomorphism $\mathcal {J}^1_{\mathcal {I}}(\mathcal {E})^{left} \cong \mathcal {J}^1_{\mathcal {I}}(\mathcal {E})^{right}$ as $\mathcal {O}_X$-modules. We also give explicit examples where $c_{\mathcal {O}_X}(\mathcal {E})\neq 0$ using jet bundles of line bundles on the projective line. Hence the classes $c_{\mathcal {J}}(\mathcal {E})$ and $c_{\mathcal {O}_X}(\mathcal {E})$ are nontrivial. The classes we introduce generalize the classical Atiyah class.References
- Michel André, Homologie des algèbres commutatives, Die Grundlehren der mathematischen Wissenschaften, Band 206, Springer-Verlag, Berlin-New York, 1974 (French). MR 0352220
- M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207. MR 86359, DOI 10.1090/S0002-9947-1957-0086359-5
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I, Inst. Hautes Études Sci. Publ. Math. 20 (1964), 259 (French). MR 173675
- Luc Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin-New York, 1971 (French). MR 0491680
- Luc Illusie, Complexe cotangent et déformations. II, Lecture Notes in Mathematics, Vol. 283, Springer-Verlag, Berlin-New York, 1972 (French). MR 0491681
- Max Karoubi, Homologie cyclique et $K$-théorie, Astérisque 149 (1987), 147 (French, with English summary). MR 913964
- Helge Maakestad, A note on principal parts on projective space and linear representations, Proc. Amer. Math. Soc. 133 (2005), no. 2, 349–355. MR 2093054, DOI 10.1090/S0002-9939-04-07453-2
- Helge Maakestad, Chern classes and Lie-Rinehart algebras, Indag. Math. (N.S.) 18 (2007), no. 4, 589–599. MR 2424316, DOI 10.1016/S0019-3577(07)80065-6
- H. Maakestad, Chern classes and $\mathrm {Exan}$ functors, in progress (2009).
- Helge Maakestad, Principal parts on the projective line over arbitrary rings, Manuscripta Math. 126 (2008), no. 4, 443–464. MR 2425435, DOI 10.1007/s00229-007-0155-6
- H. Maakestad, On parameter spaces of right $\mathcal {O}_X$-structures, in progress (2010).
- H. Maakestad, On the structure of jet bundles on projective space, in progress (2011).
Bibliographic Information
- Helge Maakestad
- Affiliation: Institut Fourier, 100 rue des maths, BP 74, 38402 St. Martin d’Hères cedex, France
- Email: \text{h_maakestad@hotmail.com}
- Received by editor(s): January 11, 2011
- Received by editor(s) in revised form: January 28, 2011, April 12, 2011, and June 13, 2011
- Published electronically: May 22, 2012
- Communicated by: Lei Ni
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 151-169
- MSC (2010): Primary 14F10, 14F40
- DOI: https://doi.org/10.1090/S0002-9939-2012-11412-1
- MathSciNet review: 2988719