Fixed point property for universal lattice on Schatten classes
HTML articles powered by AMS MathViewer
- by Masato Mimura
- Proc. Amer. Math. Soc. 141 (2013), 65-81
- DOI: https://doi.org/10.1090/S0002-9939-2012-11711-3
- Published electronically: May 7, 2012
- PDF | Request permission
Abstract:
The special linear group $G=\mathrm {SL}_n (\mathbb {Z}[x_1, \ldots , x_k])$ ($n$ at least $3$ and $k$ finite) is called the universal lattice. Let $n$ be at least $4$, and $p$ be any real number in $(1, \infty )$. The main result is the following: any finite index subgroup of $G$ has the fixed point property with respect to every affine isometric action on the space of $p$-Schatten class operators. It is in addition shown that higher rank lattices have the same property. These results are a generalization of previous theorems respectively of the author and of Bader–Furman–Gelander–Monod, which treated a commutative $L^p$-setting.References
- Asuman G. Aksoy and Mohamed A. Khamsi, Nonstandard methods in fixed point theory, Universitext, Springer-Verlag, New York, 1990. With an introduction by W. A. Kirk. MR 1066202, DOI 10.1007/978-1-4612-3444-9
- Jonathan Arazy, The isometries of $C_{p}$, Israel J. Math. 22 (1975), no. 3-4, 247–256. MR 512953, DOI 10.1007/BF02761592
- Uri Bader, Alex Furman, Tsachik Gelander, and Nicolas Monod, Property (T) and rigidity for actions on Banach spaces, Acta Math. 198 (2007), no. 1, 57–105. MR 2316269, DOI 10.1007/s11511-007-0013-0
- Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. MR 2415834, DOI 10.1017/CBO9780511542749
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- Marc Bourdon and Hervé Pajot, Cohomologie $l_p$ et espaces de Besov, J. Reine Angew. Math. 558 (2003), 85–108 (French, with English summary). MR 1979183, DOI 10.1515/crll.2003.043
- M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 199–235. MR 1694584, DOI 10.1007/s100970050007
- M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), no. 2, 219–280. MR 1911660, DOI 10.1007/s00039-002-8245-9
- P. M. Cohn, On the structure of the $\textrm {GL}_{2}$ of a ring, Inst. Hautes Études Sci. Publ. Math. 30 (1966), 5–53. MR 207856
- Tadeusz Figiel and Gilles Pisier, Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses, C. R. Acad. Sci. Paris Sér. A 279 (1974), 611–614 (French). MR 358295
- Richard J. Fleming and James E. Jamison, Isometries on Banach spaces: function spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 129, Chapman & Hall/CRC, Boca Raton, FL, 2003. MR 1957004
- M. Gromov, Random walk in random groups, Geom. Funct. Anal. 13 (2003), no. 1, 73–146. MR 1978492, DOI 10.1007/s000390300002
- Stefan Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104. MR 552464, DOI 10.1515/crll.1980.313.72
- N. Higson, V. Lafforgue, and G. Skandalis, Counterexamples to the Baum-Connes conjecture, Geom. Funct. Anal. 12 (2002), no. 2, 330–354. MR 1911663, DOI 10.1007/s00039-002-8249-5
- Marius Junge, Zhong-Jin Ruan, and David Sherman, A classification for 2-isometries of noncommutative $L_p$-spaces, Israel J. Math. 150 (2005), 285–314. MR 2255812, DOI 10.1007/BF02762384
- Gennadi Kasparov and Guoliang Yu, The coarse geometric Novikov conjecture and uniform convexity, Adv. Math. 206 (2006), no. 1, 1–56. MR 2261750, DOI 10.1016/j.aim.2005.08.004
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- Hideki Kosaki, On the continuity of the map $\varphi \rightarrow |\varphi |$ from the predual of a $W^{\ast }$-algebra, J. Funct. Anal. 59 (1984), no. 1, 123–131. MR 763779, DOI 10.1016/0022-1236(84)90055-7
- Vincent Lafforgue, Un renforcement de la propriété (T), Duke Math. J. 143 (2008), no. 3, 559–602 (French, with English and French summaries). MR 2423763, DOI 10.1215/00127094-2008-029
- Vincent Lafforgue, Propriété (T) renforcée banachique et transformation de Fourier rapide, J. Topol. Anal. 1 (2009), no. 3, 191–206 (French, with English summary). MR 2574023, DOI 10.1142/S1793525309000163
- Alexander Lubotzky, Shahar Mozes, and M. S. Raghunathan, The word and Riemannian metrics on lattices of semisimple groups, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 5–53 (2001). MR 1828742
- Masato Mimura, Fixed point properties and second bounded cohomology of universal lattices on Banach spaces, J. Reine Angew. Math. 653 (2011), 115–134. MR 2794627, DOI 10.1515/CRELLE.2011.021
- Nicolas Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758, Springer-Verlag, Berlin, 2001. MR 1840942, DOI 10.1007/b80626
- Igor Mineyev, Nicolas Monod, and Yehuda Shalom, Ideal bicombings for hyperbolic groups and applications, Topology 43 (2004), no. 6, 1319–1344. MR 2081428, DOI 10.1016/j.top.2004.01.008
- Andrés Navas, Reduction of cocycles and groups of diffeomorphisms of the circle, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 193–205. MR 2259900
- B. Olivier, Kazhdan’s property $(T)$ with respect to non-commutative $L_p$-spaces. Preprint, arXiv:1107.1394, to appear in Proc. Amer. Math. Soc.
- P. Pansu, Cohomologie $L^p$: invariance sous quasiisométrie, preprint, 1995.
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- Michael Puschnigg, Finitely summable Fredholm modules over higher rank groups and lattices, J. K-Theory 8 (2011), no. 2, 223–239. MR 2842930, DOI 10.1017/is010011023jkt131
- Yves Raynaud, On ultrapowers of non commutative $L_p$ spaces, J. Operator Theory 48 (2002), no. 1, 41–68. MR 1926043
- Yehuda Shalom, Bounded generation and Kazhdan’s property (T), Inst. Hautes Études Sci. Publ. Math. 90 (1999), 145–168 (2001). MR 1813225
- Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), no. 1, 1–54. MR 1767270, DOI 10.1007/s002220000064
- Yehuda Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2) 152 (2000), no. 1, 113–182. MR 1792293, DOI 10.2307/2661380
- Yehuda Shalom, The algebraization of Kazhdan’s property (T), International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1283–1310. MR 2275645
- David Sherman, Noncommutative $L^p$ structure encodes exactly Jordan structure, J. Funct. Anal. 221 (2005), no. 1, 150–166. MR 2124900, DOI 10.1016/j.jfa.2004.09.003
- Erling Størmer, On the Jordan structure of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 120 (1965), 438–447. MR 185463, DOI 10.1090/S0002-9947-1965-0185463-5
- A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 2, 235–252, 477 (Russian). MR 0472792
- L. Vaserstein, Bounded reduction of invertible matrices over polynomial ring by addition operators, preprint, 2007.
- F. J. Yeadon, Isometries of noncommutative $L^{p}$-spaces, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 1, 41–50. MR 611284, DOI 10.1017/S0305004100058515
- Guoliang Yu, Hyperbolic groups admit proper affine isometric actions on $l^p$-spaces, Geom. Funct. Anal. 15 (2005), no. 5, 1144–1151. MR 2221161, DOI 10.1007/s00039-005-0533-8
Bibliographic Information
- Masato Mimura
- Affiliation: Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo, 153-8914, Japan – and – École Polytechnique Fédérale de Lausanne, SB–IMB–EGG, Station 8, Bâtiment MA, Lausanne, Vaud, CH-1015, Switzerland
- Address at time of publication: Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo, 153-8914, Japan – and – Institut de Mathématiques, Faculté des Sciences, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
- Email: mimurac@ms.u-tokyo.ac.jp
- Received by editor(s): October 22, 2010
- Received by editor(s) in revised form: June 7, 2011
- Published electronically: May 7, 2012
- Additional Notes: The author is supported by JSPS Research Fellowships for Young Scientists No. 20-8313.
- Communicated by: Marius Junge
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 65-81
- MSC (2010): Primary 20F65, 20J06; Secondary 20H25, 22D12
- DOI: https://doi.org/10.1090/S0002-9939-2012-11711-3
- MathSciNet review: 2988711