COMPLETELY REGULAR PROPER REFLECTION OF LOCALES
OVER A GIVEN LOCALE

WEI HE AND MAOKANG LUO

(Communicated by Lev Borisov)

Abstract. Let X be a completely regular locale. We present a construction
which shows that every locale $f : Y \to X$ over X has a completely regular
proper reflection in the slice category Loc/X and the reflection map is a dense
embedding if and only if Y is completely regular.

Let X be a locale. We know that the category $\text{Loc}(\text{Sh}(X))$ of internal locales in
the sheaves topos $\text{Sh}(X)$ is equivalent to the slice category Loc/X of locales over X
(see [1], [2]). Also a localic map $f : Y \to X$ is proper if and only if it corresponds to
a compact internal locale in the topos $\text{Sh}(X)$ (see [3]). By a classical result given
by B. Banaschewski and C. J. Mulvey in [3], we know that the category of compact
completely regular locales (compact regular locales) is reflective in the category of
locales. So the following question is interesting:

Dose there exist a compact completely regular reflection for every internal locale
in $\text{Sh}(X)$?

Suppose $f : Y \to X$ is a locale over X. Let $g : Z \to X$ be a proper map with
Z completely regular. We call $g : Z \to X$ a completely regular proper reflection of
$f : Y \to X$ if there exists a localic map $h : Y \to Z$ such that $f = gh$,

\[
\begin{tikzcd}
Y \arrow{dr}{f} \arrow{rr}{h} & & Z \\
& X \arrow{ur}{g}
\end{tikzcd}
\]

and $h : Y \to Z$ is universal among all those localic maps from $f : Y \to X$ to a
completely regular proper map over X. Now we consider a similar question in the
slice category Loc/X as follows.

Does there exist a completely regular proper reflection for every locale $f : Y \to X$
over X? If so, can we give an explicit description of the reflection?

Suppose $f : Y \to X$ is a proper surjection and Y is regular. Then X is regular by
proposition 2 in [9]. Hence if every locale over X has a completely regular proper
reflection, then we take a surjection $g : Y \to X$ such that its completely regular
proper reflection $p : Z \to X$ will still be surjective. This requires X to be regular,

Received by the editors November 21, 2010 and, in revised form, May 4, 2011 and June 28,
2011.

2010 Mathematics Subject Classification. Primary 06D22, 18B25, 54C10.

Key words and phrases. Locale, proper map, proper reflection.

This project was supported by NSF of China.

©2012 American Mathematical Society

403
which shows that for a non-regular locale X the answer to the above question is negative.

Lemma 1. If every locale over X has a completely regular proper reflection (regular proper reflection), then X is regular.

For X being the terminal locale 2, $\text{Sh}(X) \cong \text{Set}$, then it is clear that the compact completely regular reflection for any locale Y is just the Stone–Čech compactification of Y. In this paper we will show that if X is completely regular, then every locale $f : Y \to X$ over X has a completely regular proper reflection $P_f : P_Y \to X$ in the slice category Loc/X. Moreover, the reflection map $\varepsilon_f : Y \to P_Y$ is a dense embedding if and only if Y is completely regular. In this case, $P_f : P_Y \to X$ becomes a maximal proper reflection of $f : Y \to X$ like that in the classical case.

Recall that a localic map $f : X \to Y$ is said to be proper whenever f is closed and the right adjoin $f_* : \mathcal{O}(X) \to \mathcal{O}(Y)$ of the frame morphism $f^* : \mathcal{O}(Y) \to \mathcal{O}(X)$ preserves directed joins. This is a point-free version of the classical notion of what are called perfect maps in the category of topological spaces. Properness of $f : X \to Y$ has the following characterizations (see [6], [7], [8]):

(i) f is proper;
(ii) f is stably closed; i.e., its pullback along any morphism with codomain Y is closed;
(iii) the internal locale in the topos $\text{Sh}(Y)$ corresponding to f is compact;
(iv) $\text{id}_Z \times f : Z \times X \to Z \times Y$ is closed for every locales Z.

If X is a compact locale. Then the projection $p_Y : X \times Y \to Y$ is closed for any Y (see [5]). Thus we have $\text{id}_Z \times p_Y = p_{Z \times Y} : Z \times X \times Y \to Z \times Y$ is closed for all locale Z. Hence we have the following result.

Lemma 2. Suppose X is a compact locale. Then the projection $X \times Y \to Y$ is proper for any locale Y.

Let X be a completely regular locale and let $f : Y \to X$ be a localic map. Consider the diagonal $\langle \beta, f \rangle : Y \to \beta Y \times X$, where βY is the compact completely regular reflection of Y. Write $P_Y = \uparrow \{ (u, x) \mid \beta^*(u) \land f^*(x) = 0 \}$, the closure of the image of Y under $\langle \beta, f \rangle$, and $P_f : P_Y \to X$ the composite of the closed inclusion $P_Y \hookrightarrow \beta Y \times X$ and the projection $\beta Y \times X \to X$. By Lemma 2, we know that $P_f : P_Y \to X$ is proper and P_Y is completely regular since both X and βY are completely regular. Write $\varepsilon_f : Y \to P_Y$ to be the co-restriction of $\langle \beta, f \rangle$. Then we have a commutative triangle of localic maps

$$
\begin{array}{ccc}
Y & \xrightarrow{\varepsilon_f} & P_Y \\
\downarrow{f} & & \downarrow{P_f} \\
X & & \\
\end{array}
$$

We shall show $P_f : P_Y \to X$ to be the completely regular proper reflection of $f : Y \to X$ in the slice category Loc/X. We note that the above construction can be applied to any locale X so that it becomes a functor $P : \text{Loc}/X \to \text{Loc}/X$.

Proposition 1. $P : \text{Loc}/X \to \text{Loc}/X$ is a functor such that ε becomes a natural transformation from the identity to P.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Let $h : Y \to Z$ be a localic map such that the following triangle commutes:

\[
\begin{array}{ccc}
Y & \xrightarrow{h} & Z \\
\downarrow f & & \downarrow g \\
X & \xrightarrow{\beta} & \beta Z
\end{array}
\]

Write $\beta h : \beta Y \to \beta Z$ to be the extension of h; i.e., the following square commutes:

\[
\begin{array}{ccc}
Y & \xrightarrow{h} & \beta Y \\
\downarrow \beta & & \downarrow \beta \\
Z & \xrightarrow{\beta h} & \beta Z
\end{array}
\]

Denote $0_{P_Y} = \{(u, x) \mid \beta^*_Y(u) \wedge f^*(x) = 0\}$ the least element of P_Y, and $0_{P_Z} = \{(v, x) \mid \beta^*_Z(v) \wedge g^*(x) = 0\}$ the least element of P_Z respectively. Consider the product $\tilde{h} \times id_X : \beta Y \times X \to \beta Z \times X$. For $(v, x) \in 0_{P_Z}$, we have $\beta^*_Z(v) \wedge h^*(x) = h^*(\beta^*_Z(v)) \wedge g^*(x) = h^*(\beta^*_Z(v) \wedge g^*(x)) = 0$, i.e. $(\tilde{h} \times id_X)^*(0_{P_Z}) \leq 0_{P_Y}$. Now define $P(h) : P_Y \to P_Z$ for which the corresponding frame morphism is defined by $P(h)^*(I) = (\tilde{h} \times id_X)^*(I) \lor 0_{P_Y}$. Then the following triangle commutes:

\[
\begin{array}{ccc}
P_Y & \xrightarrow{P(h)} & P_Z \\
& \downarrow P_f & \downarrow P_g \\
X & \xrightarrow{\beta} & \beta Z
\end{array}
\]

P clearly preserves composites. Hence $P : Loc/X \to Loc/X$ is a functor. To show that $\varepsilon : id \to P$ is a natural transformation, it suffices to check the commutativity of the following square. But it is straightforward.

\[
\begin{array}{ccc}
Y & \xrightarrow{\varepsilon_f} & P_Y \\
\downarrow h & & \downarrow P(h) \\
Z & \xrightarrow{\varepsilon_g} & P_Z
\end{array}
\]

Lemma 3. If $f : Y \to X$ is proper with Y completely regular, then $\varepsilon_f : Y \to P_Y$ is an isomorphism.

Proof. By the fact already proved in [8] (or [9]), the diagonal $\langle \beta, f \rangle : Y \to \beta Y \times X$ is proper. Hence $\langle \beta, f \rangle$ is a closed inclusion since $\beta : Y \to \beta Y$ is an inclusion (see [3]). This shows that the co-restriction $\varepsilon_f : Y \to P_Y$ is an isomorphism.

Theorem 1. Let X be a completely regular locale, and let $f : Y \to X$ be a localic map. Then the localic map $\varepsilon_f : Y \to P_Y$ is universal among all localic maps from $f : Y \to X$ to a completely regular proper map over X; i.e., $P_f : P_Y \to X$ is the completely regular proper reflection of $f : Y \to X$ in the slice category Loc/X. Moreover, the reflection map $\varepsilon_f : Y \to P_Y$ is a dense embedding if and only if Y is completely regular.
Proof. Suppose \(g: Z \rightarrow X \) is a proper map with \(Z \) a completely regular locale. Let \(h: Y \rightarrow Z \) be a localic map such that the following triangle commutes:

\[
\begin{array}{c}
Y \\
\downarrow f \\
\downarrow g \\
X
\end{array}
\begin{array}{c}
\downarrow h \\
Z \\
\downarrow \epsilon_g
\end{array}
\Rightarrow
\begin{array}{c}
\downarrow g \\
Y
\end{array}
\]

Then we have a commutative square

\[
\begin{array}{ccc}
Y & \xrightarrow{\epsilon_f} & P_Y \\
\downarrow h & & \downarrow \epsilon(h) \\
Z & \xrightarrow{\epsilon_g} & P_Z
\end{array}
\]

By Lemma 3, \(\epsilon_g: Z \rightarrow P_Z \) is an isomorphism. Hence \(h \) has a factorization \(h = \epsilon_g^{-1}P(h)\epsilon_f \). If \(h = r\epsilon_f \) is another factorization of \(h \), then the equalizer of \(\epsilon_g^{-1}P(h) \) and \(r \) is a closed sublocale of \(P_Y \) since \(Z \) is completely regular, hence must be Hausdorff. But the equalizer contains \(Y \) and so must be \(P_Y \) itself. Hence \(r = \epsilon_g^{-1}P(h) \). If \(Y \) is completely regular, then \(\epsilon_f: Y \rightarrow P_Y \) is an embedding since \(\beta: Y \rightarrow \beta Y \) is an embedding. Conversely if \(\epsilon_f: Y \rightarrow P_Y \) is an embedding, then \(Y \) is completely regular since \(P_Y \) is completely regular.

It is interesting that we can apply the above reflection construction to the category of topological spaces and thus get a completely regular perfect reflection for every topological space over a given completely regular space.

Let \(X \) be a completely regular space, and let \(f: Y \rightarrow X \) be a continuous map. Write \(P_Y \) for the closure of the image of \(Y \) under the diagonal \(\langle \beta, f \rangle: Y \rightarrow \beta Y \times X \), where \(\beta Y \) is the Stone–Čech compactification of \(Y \). Then the restriction \(P_f: P_Y \rightarrow X \) of the projection is a perfect map and \(P_Y \) is completely regular. Denote by \(\epsilon_Y: Y \rightarrow P_Y \) the co-restriction of the diagonal \(\langle \beta, f \rangle \). Assuming the axiom of choice, we have the following result.

Corollary 1. \(\epsilon_Y: Y \rightarrow P_Y \) is universal among all continuous maps from the topological space \(f: Y \rightarrow X \) over \(X \) to a completely regular perfect map over \(X \); i.e., \(P_f: P_Y \rightarrow X \) is the completely regular perfect reflection of \(f: Y \rightarrow X \) in the slice category \(\text{Top}/X \).

Now we consider a more general case when the given locale \(X \) is not completely regular. In this case we will show that for a special class of locales over \(X \), i.e. those locales \(f: Y \rightarrow X \) over \(X \) such that the closure \(f(Y) \) of the image \(f(Y) \) of \(Y \) under \(f \) is completely regular, it indeed has a completely regular proper reflection in \(\text{Loc}/X \).

Lemma 4. Let \(p: Y \rightarrow X \) be a proper map. If the image \(p(Y) \) of \(Y \) under \(p \) is contained in a sublocale \(Y_j \) of \(Y \), then the co-restriction map \(\bar{p}: Y \rightarrow Y_j \) is proper.

Proof. \(\bar{p} \) is clearly closed. Suppose \(\{y_s \mid s \in S\} \subset Y_j \) is directed. Then \(\bar{p}^*(\vee^I y_s) = \bar{p}^*(j(\vee y_s)) = p^*(\vee y_s) = \vee p^*(y_s) = \vee \bar{p}^*(y_s) \), where \(\vee^I \) represents the join in \(Y_j \). Hence \(\bar{p}^* \) preserves directed joins. \(\square \)
Let X be a locale. Suppose $f : Y \to X$ is a locale over X such that the closure $\overline{f(Y)}$ of the image $f(Y)$ of Y under f is completely regular. We have a factorization $Y \xrightarrow{f} X = Y \xrightarrow{\overline{f(Y)}} \overline{f(Y)} \xrightarrow{\overline{f}} Y$. Similar to the case for X being completely regular, we have a diagonal map $\langle \beta, f \rangle : Y \to \beta Y \times \overline{f(Y)}$. Write $\hat{P}_Y = \{(u, x) \mid \beta^*(u) \land \hat{f}^*(x) = 0\}$, the closure of the image of Y under $\langle \beta, \hat{f} \rangle$, and $\hat{P}_f : \hat{P}_Y \to X$ the composite of the closed inclusion $\hat{P}_Y \to \beta Y \times \overline{f(Y)}$, the projection $\beta Y \times \overline{f(Y)} \to \overline{f(Y)}$ and the inclusion $\overline{f(Y)} \to X$. Then $\hat{P}_f : \hat{P}_Y \to X$ is proper and \hat{P}_Y is completely regular since both $\overline{f(Y)}$ and βY are completely regular. Denote by $\varepsilon : Y \to \hat{P}_Y$ the co-restriction of $\langle \beta, f \rangle$. We have a commutative triangle

\[
\begin{array}{ccc}
Y & \xrightarrow{\varepsilon} & \hat{P}_Y \\
\downarrow{f} & & \downarrow{\hat{P}_f} \\
X & & \\
\end{array}
\]

Theorem 2. $\hat{P}_f : \hat{P}_Y \to X$ is a completely regular proper reflection of $f : Y \to X$ in the slice category Loc/X and $\varepsilon : Y \to \hat{P}_Y$ is the reflection map. Moreover, the reflection map $\varepsilon : Y \to \hat{P}_Y$ is a dense embedding if and only if Y is completely regular.

Proof. Suppose $g : Z \to X$ is a proper map with Z completely regular. Let $h : Y \to Z$ be a localic map such that $f = gh$. Write for $\overline{h(Y)}$ the closure of the image $h(Y)$ of Y under h. Then $h : Y \to Z$ has a factorization $Y \xrightarrow{\bar{h}} \overline{h(Y)} \xrightarrow{b} Z$. We have $g(\overline{h(Y)}) = g(\overline{h(Y)}) = \overline{f(Y)}$ since g is closed. Note that the composite $\overline{h(Y)} \to Z \xrightarrow{\beta} X$ is proper, so its co-restriction $s : \overline{h(Y)} \to g(\overline{h(Y)}) = \overline{f(Y)}$ is proper by Lemma 4. Moreover we have $f' s h = gh \bar{h} = gh = f' f$; hence $s \bar{h} = f$ since f' is monic. By Theorem 1, the co-restriction \bar{h} can be uniquely factored through $\varepsilon : Y \to \hat{P}_Y$ by a map $r : \hat{P}_Y \to \overline{h(Y)}$. Thus $h : Y \to Z$ can be factored through $\varepsilon : Y \to \hat{P}_Y$ as $Y \xrightarrow{h} Z = Y \xrightarrow{\bar{h}} \overline{h(Y)} \to Z = Y \xrightarrow{\varepsilon} \hat{P}(Y) \xrightarrow{\hat{P}_f} \overline{h(Y)} \to Z$. The factorization through ε is essentially unique since $\varepsilon : Y \to \hat{P}(Y)$ is dense and Z is completely regular.

Acknowledgement

The authors would like to thank the referee for helpful suggestions.

References

Institute of Mathematics, Nanjing Normal University, Nanjing, 210046, People’s Republic of China
E-mail address: weihe@njnu.edu.cn

Institute of Mathematics, Sichuan University, Chengdu, 610064, People’s Republic of China