## Curves of genus $g$ whose canonical model lies on a surface of degree $g+1$

HTML articles powered by AMS MathViewer

- by Gianfranco Casnati PDF
- Proc. Amer. Math. Soc.
**141**(2013), 437-450 Request permission

## Abstract:

Let $C$ be a non-hyperelliptic curve of genus $g$. We prove that if the minimal degree of a surface containing the canonical model of $C$ in $\check {\mathbb {P}}_k^{g-1}$ is $g+1$, then either $g\ge 9$ and $C$ carries exactly one $g^{1}_{4}$ or $7\le g\le 15$ and $C$ is birationally isomorphic to a plane septic curve with at most double points as singularities.## References

- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris,
*Geometry of algebraic curves. Vol. I*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR**770932**, DOI 10.1007/978-1-4757-5323-3 - Edoardo Ballico, Gianfranco Casnati, and Claudio Fontanari,
*On the geometry of bihyperelliptic curves*, J. Korean Math. Soc.**44**(2007), no. 6, 1339–1350. MR**2358958**, DOI 10.4134/JKMS.2007.44.6.1339 - E. Ballico, G. Casnati, and R. Notari,
*Canonical curves with low apolarity*, J. Algebra**332**(2011), 229–243. MR**2774686**, DOI 10.1016/j.jalgebra.2010.12.030 - James N. Brawner,
*Tetragonal curves, scrolls, and $K3$ surfaces*, Trans. Amer. Math. Soc.**349**(1997), no. 8, 3075–3091. MR**1401515**, DOI 10.1090/S0002-9947-97-01811-4 - G. Casnati,
*Canonical curves on surfaces of very low degree*, Proc. Amer. Math. Soc.**140**(2012), 1185–1197. - G. Casnati and T. Ekedahl,
*Covers of algebraic varieties. I. A general structure theorem, covers of degree $3,4$ and Enriques surfaces*, J. Algebraic Geom.**5**(1996), no. 3, 439–460. MR**1382731** - Gabriela Chaves,
*Revêtements ramifiés de la droite projective complexe*, Math. Z.**226**(1997), no. 1, 67–84 (French). MR**1472141**, DOI 10.1007/PL00004334 - C. Ciliberto and J. Harris,
*Surfaces of low degree containing a general canonical curve*, Comm. Algebra**27**(1999), no. 3, 1127–1140. MR**1669124**, DOI 10.1080/00927879908826485 - Marc Coppens and Takao Kato,
*The gonality of smooth curves with plane models*, Manuscripta Math.**70**(1990), no. 1, 5–25. MR**1080899**, DOI 10.1007/BF02568358 - Marc Coppens and Takao Kato,
*Correction to: “The gonality of smooth curves with plane models”*, Manuscripta Math.**71**(1991), no. 3, 337–338. MR**1103738**, DOI 10.1007/BF02568410 - I. Coşkun,
*Surfaces of low degree containing a canonical curve*. To appear in Contemp. Math. - M. Demazure,
*Surfaces de Del Pezzo – II, III, IV, V*, Séminaire sur les singularités des surfaces, Palaiseau, France 1976–1977 (M. Demazure, H. Pinkham, B. Teissier, eds.), Lecture Notes in Math. 777, Springer, 1980. - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0 - Juan C. Migliore,
*Introduction to liaison theory and deficiency modules*, Progress in Mathematics, vol. 165, Birkhäuser Boston, Inc., Boston, MA, 1998. MR**1712469**, DOI 10.1007/978-1-4612-1794-7 - Masahito Ohkouchi and Fumio Sakai,
*The gonality of singular plane curves*, Tokyo J. Math.**27**(2004), no. 1, 137–147. MR**2060080**, DOI 10.3836/tjm/1244208480 - B. Saint-Donat,
*On Petri’s analysis of the linear system of quadrics through a canonical curve*, Math. Ann.**206**(1973), 157–175. MR**337983**, DOI 10.1007/BF01430982 - Frank-Olaf Schreyer,
*Syzygies of canonical curves and special linear series*, Math. Ann.**275**(1986), no. 1, 105–137. MR**849058**, DOI 10.1007/BF01458587 - Frank-Olaf Schreyer,
*A standard basis approach to syzygies of canonical curves*, J. Reine Angew. Math.**421**(1991), 83–123. MR**1129577**, DOI 10.1515/crll.1991.421.83 - Oscar Zariski,
*A simplified proof for the resolution of singularities of an algebraic surface*, Ann. of Math. (2)**43**(1942), 583–593. MR**6851**, DOI 10.2307/1968814

## Additional Information

**Gianfranco Casnati**- Affiliation: Dipartimento di Matematica, Politecnico di Torino, c. so Duca degli Abruzzi 24, 10129 Torino, Italy
- MR Author ID: 313798
- Email: casnati@calvino.polito.it
- Received by editor(s): March 21, 2011
- Received by editor(s) in revised form: July 1, 2011
- Published electronically: June 12, 2012
- Additional Notes: This work was done in the framework of PRIN ‘Geometria delle varietà algebriche e dei loro spazi di moduli’, cofinanced by MIUR (COFIN 2008)
- Communicated by: Lev Borisov
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 437-450 - MSC (2010): Primary 14N25; Secondary 14H51, 14H30, 14N05
- DOI: https://doi.org/10.1090/S0002-9939-2012-11335-8
- MathSciNet review: 2996948