The Kahn-Priddy Theorem and the homotopy of the three-sphere
HTML articles powered by AMS MathViewer
- by Piotr Beben and Stephen Theriault
- Proc. Amer. Math. Soc. 141 (2013), 711-723
- DOI: https://doi.org/10.1090/S0002-9939-2012-11337-1
- Published electronically: June 12, 2012
- PDF | Request permission
Abstract:
Let $p$ be an odd prime. The least nontrivial $p$-torsion homotopy group of $S^{3}$ occurs in dimension $2p$ and is of order $p$. This induces a map $f\colon P^{2p+1}(p)\rightarrow S^{3}$, where $P^{2p+1}(p)$ is a mod-$p$ Moore space. An important conjecture related to the Kahn-Priddy Theorem is that the double loops on the three-connected cover of $f$ has a right homotopy inverse. We prove a weaker but still useful property: if $X$ is the cofiber of $f$, then the double loop on the three-connected cover of the inclusion $S^{3}\rightarrow X$ is null homotopic.References
- David Anick, Differential algebras in topology, Research Notes in Mathematics, vol. 3, A K Peters, Ltd., Wellesley, MA, 1993. MR 1213682
- David Anick and Brayton Gray, Small $H$ spaces related to Moore spaces, Topology 34 (1995), no. 4, 859–881. MR 1362790, DOI 10.1016/0040-9383(95)00001-1
- Piotr Beben and Stephen Theriault, Torsion in finite $H$-spaces and the homotopy of the three-sphere, Homology Homotopy Appl. 12 (2010), no. 2, 25–37. MR 2721030, DOI 10.4310/HHA.2010.v12.n2.a2
- F. R. Cohen, Two-primary analogues of Selick’s theorem and the Kahn-Priddy theorem for the $3$-sphere, Topology 23 (1984), no. 4, 401–421. MR 780733, DOI 10.1016/0040-9383(84)90003-X
- F. R. Cohen and M. E. Mahowald, A remark on the self-maps of $\Omega ^{2}S^{2n+1}$, Indiana Univ. Math. J. 30 (1981), no. 4, 583–588. MR 620268, DOI 10.1512/iumj.1981.30.30046
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2) 109 (1979), no. 1, 121–168. MR 519355, DOI 10.2307/1971269
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no. 3, 549–565. MR 554384, DOI 10.2307/1971238
- Brayton Gray, On the iterated suspension, Topology 27 (1988), no. 3, 301–310. MR 963632, DOI 10.1016/0040-9383(88)90011-0
- Brayton Gray and Stephen Theriault, An elementary construction of Anick’s fibration, Geom. Topol. 14 (2010), no. 1, 243–275. MR 2578305, DOI 10.2140/gt.2010.14.243
- I. M. James, Reduced product spaces, Ann. of Math. (2) 62 (1955), 170–197. MR 73181, DOI 10.2307/2007107
- Daniel S. Kahn and Stewart B. Priddy, The transfer and stable homotopy theory, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 103–111. MR 464230, DOI 10.1017/S0305004100054335
- Joseph Neisendorfer, Properties of certain $H$-spaces, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 134, 201–209. MR 698206, DOI 10.1093/qmath/34.2.201
- Joseph A. Neisendorfer, The exponent of a Moore space, Algebraic topology and algebraic $K$-theory (Princeton, N.J., 1983) Ann. of Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 35–71. MR 921472
- Joseph Neisendorfer, Algebraic methods in unstable homotopy theory, New Mathematical Monographs, vol. 12, Cambridge University Press, Cambridge, 2010. MR 2604913, DOI 10.1017/CBO9780511691638
- Paul Selick, Odd primary torsion in $\pi _{k}(S^{3})$, Topology 17 (1978), no. 4, 407–412. MR 516219, DOI 10.1016/0040-9383(78)90007-1
- Paul Selick, Space exponents for loop spaces of spheres, Stable and unstable homotopy (Toronto, ON, 1996) Fields Inst. Commun., vol. 19, Amer. Math. Soc., Providence, RI, 1998, pp. 279–283. MR 1622353, DOI 10.1016/s0022-4049(96)00177-6
- Stephen D. Theriault, Anick’s spaces and the double loops of odd primary Moore spaces, Trans. Amer. Math. Soc. 353 (2001), no. 4, 1551–1566. MR 1709779, DOI 10.1090/S0002-9947-00-02622-2
Bibliographic Information
- Piotr Beben
- Affiliation: Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Email: bebenp@unbc.ca
- Stephen Theriault
- Affiliation: Department of Mathematical Sciences, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
- MR Author ID: 652604
- Email: s.theriault@abdn.ac.uk
- Received by editor(s): July 1, 2011
- Published electronically: June 12, 2012
- Communicated by: Brooke Shipley
- © Copyright 2012 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 141 (2013), 711-723
- MSC (2010): Primary 55P35, 55Q40
- DOI: https://doi.org/10.1090/S0002-9939-2012-11337-1
- MathSciNet review: 2996976