ON THE NORM CLOSURE PROBLEM
FOR COMPLEX SYMMETRIC OPERATORS

STEPHAN RAMON GARCIA AND DANIEL E. POORE

(Communicated by Marius Junge)

Abstract. We prove that the set of all complex symmetric operators on a separable, infinite-dimensional Hilbert space is not norm closed.

In [2, Sect. 3], it is asked whether the set of all complex symmetric operators on a separable, infinite-dimensional Hilbert space is norm closed. We answer this question in the negative. Let $S(a_0, a_1, a_2, \ldots) = (0, a_0, a_1, \ldots)$ denote the unilateral shift on $\ell^2(\mathbb{N})$ and let \cong denote unitary equivalence. Note that

$$
T_n = \frac{n}{n+1} S \oplus (\bigoplus_{j=1}^{\infty} \frac{1}{j+1} S) \oplus (\bigoplus_{j=1}^{\infty} \frac{1}{j+1} S^*) \cong \bigoplus_{j=1}^{\infty} \frac{1}{j+1} (S \oplus S^*)
$$

is complex symmetric by [1, Ex. 5]. On the other hand, T_n converges in norm to

$$
T = S \oplus (\bigoplus_{j=1}^{\infty} \frac{1}{j+1} S) \oplus (\bigoplus_{j=1}^{\infty} \frac{1}{j+1} S^*) \cong S \oplus \bigoplus_{j=1}^{\infty} \frac{1}{j+1} (S \oplus S^*).
$$

Since $\|S^k(1,0,0,\ldots)\| = 1$, there is an x so that $\|T^k x\| = 1$ for $k \geq 0$. However,

$$
T^* = S^* \oplus \bigoplus_{j=1}^{\infty} \frac{1}{j+1} (S^* \oplus S) = S^* \oplus (a \text{ strict contraction})
$$

possesses no such vector since $(S^*)^k$ tends strongly to zero. This precludes the existence of a conjugation C (i.e., an isometric, conjugate-linear involution) such that $T = CT^*C$. Thus T is not complex symmetric. □

Acknowledgements

We thank D. Sherman for his helpful suggestions. We also note that S. Zhu, C.G. Li, and Y.Q. Ji discovered a different approach [3] shortly before we did.

References

Department of Mathematics, Pomona College, Claremont, California 91711

E-mail address: Stephan.Garcia@pomona.edu

URL: http://pages.pomona.edu/~sg064747

Received by the editors March 27, 2011 and, in revised form, June 30, 2011. 2010 Mathematics Subject Classification. Primary 47A05, 47B35, 47B99.

Key words and phrases. Complex symmetric operator, norm closure, Hilbert space.

This work partially supported by National Science Foundation Grant DMS-1001614.

©2012 American Mathematical Society
Reverts to public domain 28 years from publication

549