## Effective equidistribution of the real part of orbits on hyperbolic surfaces

HTML articles powered by AMS MathViewer

- by Jimi L. Truelsen PDF
- Proc. Amer. Math. Soc.
**141**(2013), 505-514 Request permission

## Abstract:

For non-cocompact Fuchsian groups with finite covolume we prove that the real part of the orbit of a point in the upper half-plane is equidistributed with an effective error term. This extends previous results by A. Good, M. Risager, and Z. Rudnick. We use the equidistribution result to generalize a theorem by F. Chamizo.## References

- Fernando Chamizo,
*Hyperbolic lattice point problems*, Proc. Amer. Math. Soc.**139**(2011), no. 2, 451–459. MR**2736328**, DOI 10.1090/S0002-9939-2010-10536-1 - Jean Delsarte,
*Sur le gitter fuchsien*, C. R. Acad. Sci. Paris**214**(1942), 147–179 (French). MR**7769** - P. Erdös and P. Turán,
*On a problem in the theory of uniform distribution. I*, Nederl. Akad. Wetensch., Proc.**51**(1948), 1146–1154 = Indagationes Math. 10, 370–378 (1948). MR**27895** - Anton Good,
*Local analysis of Selberg’s trace formula*, Lecture Notes in Mathematics, vol. 1040, Springer-Verlag, Berlin, 1983. MR**727476**, DOI 10.1007/BFb0073074 - Heinz Huber,
*Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen*, Math. Ann.**138**(1959), 1–26 (German). MR**109212**, DOI 10.1007/BF01369663 - Heinz Huber,
*Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II*, Math. Ann.**142**(1960/61), 385–398 (German). MR**126549**, DOI 10.1007/BF01451031 - Heinz Huber,
*Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. II*, Math. Ann.**143**(1961), 463—464 (German). MR**154980**, DOI 10.1007/BF01470758 - A. Gorodnik and A. Nevo.
*Counting lattice points*. J. Reine Angew. Math. 663 (2012), 127-176. - Henryk Iwaniec,
*Spectral methods of automorphic forms*, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI; Revista Matemática Iberoamericana, Madrid, 2002. MR**1942691**, DOI 10.1090/gsm/053 - S. J. Patterson,
*A lattice-point problem in hyperbolic space*, Mathematika**22**(1975), no. 1, 81–88. MR**422160**, DOI 10.1112/S0025579300004526 - Morten S. Risager and Zeév Rudnick,
*On the statistics of the minimal solution of a linear Diophantine equation and uniform distribution of the real part of orbits in hyperbolic spaces*, Spectral analysis in geometry and number theory, Contemp. Math., vol. 484, Amer. Math. Soc., Providence, RI, 2009, pp. 187–194. MR**1500148**, DOI 10.1090/conm/484/09475 - Morten S. Risager and Jimi L. Truelsen,
*Distribution of angles in hyperbolic lattices*, Q. J. Math.**61**(2010), no. 1, 117–133. MR**2592028**, DOI 10.1093/qmath/han033

## Additional Information

**Jimi L. Truelsen**- Affiliation: Department of Mathematical Sciences, Aarhus University, Ny Munkegade 118, DK-8000 Aarhus C, Denmark
- Email: lee@imf.au.dk
- Received by editor(s): June 18, 2011
- Received by editor(s) in revised form: July 9, 2011
- Published electronically: June 28, 2012
- Additional Notes: The author was funded by a stipend from The Danish Agency for Science, Technology and Innovation.
- Communicated by: Kathrin Bringmann
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 505-514 - MSC (2010): Primary 11B05, 11J71; Secondary 11M36
- DOI: https://doi.org/10.1090/S0002-9939-2012-11360-7
- MathSciNet review: 2996954