Transient anomalous sub-diffusion on bounded domains
HTML articles powered by AMS MathViewer
- by Mark M. Meerschaert, Erkan Nane and P. Vellaisamy
- Proc. Amer. Math. Soc. 141 (2013), 699-710
- DOI: https://doi.org/10.1090/S0002-9939-2012-11362-0
- Published electronically: June 26, 2012
- PDF | Request permission
Abstract:
This paper develops strong solutions and stochastic solutions for the tempered fractional diffusion equation on bounded domains. First the eigenvalue problem for tempered fractional derivatives is solved. Then a separation of variables and eigenfunction expansions in time and space are used to write strong solutions. Finally, stochastic solutions are written in terms of an inverse subordinator.References
- Boris Baeumer and Mark M. Meerschaert, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math. 233 (2010), no. 10, 2438–2448. MR 2577834, DOI 10.1016/j.cam.2009.10.027
- Ole E. Barndorff-Nielsen and Neil Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol. 63 (2001), no. 2, 167–241. MR 1841412, DOI 10.1111/1467-9868.00282
- Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR 1329542
- Richard F. Bass, Diffusions and elliptic operators, Probability and its Applications (New York), Springer-Verlag, New York, 1998. MR 1483890
- M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II, Geophys. J. R. Astr. Soc. 13 (1967), 529–539.
- Peter Carr, Hélyette Geman, Dilip B. Madan, and Marc Yor, Stochastic volatility for Lévy processes, Math. Finance 13 (2003), no. 3, 345–382. MR 1995283, DOI 10.1111/1467-9965.00020
- Á. Cartea and D. del Castillo-Negrete, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E 76 (2007), 041105.
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- V. A. Ditkin and A. P. Prudnikov, Integral transforms and operational calculus, Pergamon Press, Oxford-Edinburgh-New York, 1965. Translated by D. E. Brown; English translation edited by Ian N. Sneddon. MR 0196422
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Niels Jacob, Pseudo-differential operators and Markov processes, Mathematical Research, vol. 94, Akademie Verlag, Berlin, 1996. MR 1409607
- Anatoly N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl. 340 (2008), no. 1, 252–281. MR 2376152, DOI 10.1016/j.jmaa.2007.08.024
- Rosario N. Mantegna and H. Eugene Stanley, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys. Rev. Lett. 73 (1994), no. 22, 2946–2949. MR 1303317, DOI 10.1103/PhysRevLett.73.2946
- R. N. Mantegna and H. E. Stanley, Scaling behavior in the dynamics of an economic index, Nature 376 (1995), 46–49.
- Mark M. Meerschaert and Hans-Peter Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), no. 3, 623–638. MR 2074812, DOI 10.1239/jap/1091543414
- Mark M. Meerschaert, Erkan Nane, and P. Vellaisamy, Fractional Cauchy problems on bounded domains, Ann. Probab. 37 (2009), no. 3, 979–1007. MR 2537547, DOI 10.1214/08-AOP426
- Mark M. Meerschaert and Hans-Peter Scheffler, Triangular array limits for continuous time random walks, Stochastic Process. Appl. 118 (2008), no. 9, 1606–1633. MR 2442372, DOI 10.1016/j.spa.2007.10.005
- M. M. Meerschaert, Y. Zhang and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett. 35 (2008), L17403.
- Kenneth S. Miller and Bertram Ross, An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993. MR 1219954
- Jan Rosiński, Tempering stable processes, Stochastic Process. Appl. 117 (2007), no. 6, 677–707. MR 2327834, DOI 10.1016/j.spa.2006.10.003
- H. L. Royden, Real analysis, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0151555
- Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev, Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993. Theory and applications; Edited and with a foreword by S. M. Nikol′skiĭ; Translated from the 1987 Russian original; Revised by the authors. MR 1347689
- Aleksander Stanislavsky, Karina Weron, and Aleksander Weron, Diffusion and relaxation controlled by tempered $\alpha$-stable processes, Phys. Rev. E (3) 78 (2008), no. 5, 051106, 6. MR 2551366, DOI 10.1103/PhysRevE.78.051106
- Zhang Yong, David A. Benson, Mark M. Meerschaert, and Hans-Peter Scheffler, On using random walks to solve the space-fractional advection-dispersion equations, J. Stat. Phys. 123 (2006), no. 1, 89–110. MR 2225237, DOI 10.1007/s10955-006-9042-x
- Y. Zhang, M. M. Meerschaert and B. Baeumer, Particle tracking for time-fractional diffusion, Phys. Rev. E 78 (2008), 036705.
Bibliographic Information
- Mark M. Meerschaert
- Affiliation: Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48823
- Email: mcubed@stt.msu.edu
- Erkan Nane
- Affiliation: Department of Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, Alabama 36849
- MR Author ID: 782700
- Email: nane@auburn.edu
- P. Vellaisamy
- Affiliation: Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Email: pv@math.iit.ac.in
- Received by editor(s): May 2, 2011
- Received by editor(s) in revised form: July 8, 2011
- Published electronically: June 26, 2012
- Additional Notes: The first author was partially supported by NSF grants DMS-1025486, DMS-0803360, EAR-0823965 and NIH grant R01-EB012079-01.
This paper was completed while the third author was visiting Michigan State University. - Communicated by: Edward C. Waymire
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 699-710
- MSC (2010): Primary 60G52, 35Q86; Secondary 35P10
- DOI: https://doi.org/10.1090/S0002-9939-2012-11362-0
- MathSciNet review: 2996975