## Recurrence coefficients of generalized Charlier polynomials and the fifth Painlevé equation

HTML articles powered by AMS MathViewer

- by Galina Filipuk and Walter Van Assche PDF
- Proc. Amer. Math. Soc.
**141**(2013), 551-562 Request permission

## Abstract:

We investigate generalizations of the Charlier polynomials on the lattice $\mathbb {N}$, on the shifted lattice $\mathbb {N}+1-\beta$, and on the bi-lattice $\mathbb {N}\;\cup$ $(\mathbb {N}+1-\beta )$. We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to solutions of the fifth Painlevé equation P$_{\mathrm {V}}$ (which can be transformed to the third Painlevé equation). Initial conditions for different lattices can be transformed to the classical solutions of P$_{\mathrm {V}}$ with special values of the parameters.## References

- Milton Abramowitz and Irene A. Stegun (eds.),
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR**1225604** - V. È. Adler,
*Nonlinear chains and Painlevé equations*, Phys. D**73**(1994), no. 4, 335–351. MR**1280883**, DOI 10.1016/0167-2789(94)90104-X - Lies Boelen, Galina Filipuk, and Walter Van Assche,
*Recurrence coefficients of generalized Meixner polynomials and Painlevé equations*, J. Phys. A**44**(2011), no. 3, 035202, 19. MR**2749070**, DOI 10.1088/1751-8113/44/3/035202 - T. S. Chihara,
*An introduction to orthogonal polynomials*, Mathematics and its Applications, Vol. 13, Gordon and Breach Science Publishers, New York-London-Paris, 1978. MR**0481884** - G. Filipuk, W. Van Assche, and L. Zhang
*The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation*, arXiv:1105.5229v1 [math.CA] - G. Filipuk and W. Van Assche,
*Recurrence coefficients of a new generalization of the Meixner polynomials*, SIGMA Symmetry Integrability Geom. Methods Appl.**7**(2011), 068, 11 pages. - A. S. Fokas and M. J. Ablowitz,
*On a unified approach to transformations and elementary solutions of Painlevé equations*, J. Math. Phys.**23**(1982), no. 11, 2033–2042. MR**679998**, DOI 10.1063/1.525260 - Valerii I. Gromak, Ilpo Laine, and Shun Shimomura,
*Painlevé differential equations in the complex plane*, De Gruyter Studies in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2002. MR**1960811**, DOI 10.1515/9783110198096 - M. N. Hounkonnou, C. Hounga, and A. Ronveaux,
*Discrete semi-classical orthogonal polynomials: generalized Charlier*, J. Comput. Appl. Math.**114**(2000), no. 2, 361–366. MR**1737084**, DOI 10.1016/S0377-0427(99)00275-7 - Mourad E. H. Ismail,
*Classical and quantum orthogonal polynomials in one variable*, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey. MR**2191786**, DOI 10.1017/CBO9781107325982 - Jürgen Moser,
*Finitely many mass points on the line under the influence of an exponential potential–an integrable system*, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, pp. 467–497. MR**0455038** - Masatoshi Noumi,
*Painlevé equations through symmetry*, Translations of Mathematical Monographs, vol. 223, American Mathematical Society, Providence, RI, 2004. Translated from the 2000 Japanese original by the author. MR**2044201**, DOI 10.1090/mmono/223 - Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.),
*NIST handbook of mathematical functions*, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR**2723248** - C. Smet and W. Van Assche,
*Orthogonal polynomials on a bi-lattice*, Constr. Approx., DOI:10.1007/S00365-011-9145-8, arXiv:1101.1817v1 [math.CA] - T. Tokihiro, B. Grammaticos, and A. Ramani,
*From the continuous $\rm P_V$ to discrete Painlevé equations*, J. Phys. A**35**(2002), no. 28, 5943–5950. MR**1930545**, DOI 10.1088/0305-4470/35/28/312 - V.V. Tsegelnik,
*The Painlevé type equations: analytical properties of solutions and their applications*, Habilitation thesis, Minsk, 2001 (in Russian). - Walter Van Assche and Mama Foupouagnigni,
*Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials*, J. Nonlinear Math. Phys.**10**(2003), no. suppl. 2, 231–237. MR**2063533**, DOI 10.2991/jnmp.2003.10.s2.19

## Additional Information

**Galina Filipuk**- Affiliation: Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
- Email: filipuk@mimuw.edu.pl
**Walter Van Assche**- Affiliation: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Box 2400, BE-3001 Leuven, Belgium
- MR Author ID: 176825
- ORCID: 0000-0003-3446-6936
- Email: Walter.VanAssche@wis.kuleuven.be
- Received by editor(s): June 15, 2011
- Received by editor(s) in revised form: June 30, 2011
- Published electronically: June 11, 2012
- Additional Notes: The first author is partially supported by Polish MNiSzW Grant N N201 397937.

The second author was supported by the Belgian Interuniversity Attraction Pole P6/02, FWO Grant G.0427.09 and KU Leuven Research Grant OT/08/033. - Communicated by: Sergei K. Suslov
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 551-562 - MSC (2010): Primary 34M55, 33E17; Secondary 33C47, 42C05, 65Q30
- DOI: https://doi.org/10.1090/S0002-9939-2012-11468-6
- MathSciNet review: 2996960