Criteria for Toeplitz operators on the sphere
HTML articles powered by AMS MathViewer
- by Jingbo Xia
- Proc. Amer. Math. Soc. 141 (2013), 637-644
- DOI: https://doi.org/10.1090/S0002-9939-2012-11489-3
- Published electronically: July 2, 2012
- PDF | Request permission
Abstract:
Let $H^{2}(S)$ be the Hardy space on the unit sphere $S$ in $\mathbf {C}^{n}$. We show that a set of inner functions $\Lambda$ is sufficient for the purpose of determining which $A\in {\mathcal {B}}(H^{2}(S))$ is a Toeplitz operator if and only if the multiplication operators $\{M_{u} : u \in \Lambda \}$ on $L^{2}(S,d\sigma )$ generate the von Neumann algebra $\{M_{f} : f \in L^{\infty }(S,d\sigma )\}$.References
- A. B. Aleksandrov, The existence of inner functions in a ball, Mat. Sb. (N.S.) 118(160) (1982), no. 2, 147–163, 287 (Russian). MR 658785
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- A. M. Davie and N. P. Jewell, Toeplitz operators in several complex variables, J. Functional Analysis 26 (1977), no. 4, 356–368. MR 0461195, DOI 10.1016/0022-1236(77)90020-9
- Mark Feldman and Richard Rochberg, Singular value estimates for commutators and Hankel operators on the unit ball and the Heisenberg group, Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math., vol. 122, Dekker, New York, 1990, pp. 121–159. MR 1044786, DOI 10.1007/978-94-009-1942-6_{9}
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. I, Pure and Applied Mathematics, vol. 100, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. Elementary theory. MR 719020
- Erik Løw, A construction of inner functions on the unit ball in $\textbf {C}^{p}$, Invent. Math. 67 (1982), no. 2, 223–229. MR 665154, DOI 10.1007/BF01393815
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
- Walter Rudin, Inner functions in the unit ball of $\textbf {C}^{n}$, J. Functional Analysis 50 (1983), no. 1, 100–126. MR 690001, DOI 10.1016/0022-1236(83)90062-9
Bibliographic Information
- Jingbo Xia
- Affiliation: Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260
- MR Author ID: 215486
- Email: jxia@acsu.buffalo.edu
- Received by editor(s): December 18, 2010
- Received by editor(s) in revised form: July 10, 2011
- Published electronically: July 2, 2012
- Communicated by: Marius Junge
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 637-644
- MSC (2010): Primary 46L10, 47B35
- DOI: https://doi.org/10.1090/S0002-9939-2012-11489-3
- MathSciNet review: 2996968