On the first moment of the symmetric-square $L$-function
HTML articles powered by AMS MathViewer
- by Qingfeng Sun
- Proc. Amer. Math. Soc. 141 (2013), 369-375
- DOI: https://doi.org/10.1090/S0002-9939-2012-11564-3
- Published electronically: November 6, 2012
- PDF | Request permission
Abstract:
We improve the error term in the asymptotic formula for the twisted first moment of the symmetric-square $L$-function on the critical line.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Valentin Blomer, On the central value of symmetric square $L$-functions, Math. Z. 260 (2008), no.ย 4, 755โ777. MR 2443329, DOI 10.1007/s00209-008-0299-4
- Satadal Ganguly, Jeffrey Hoffstein, and Jyoti Sengupta, Determining modular forms on $\textrm {SL}_2(\Bbb Z)$ by central values of convolution $L$-functions, Math. Ann. 345 (2009), no.ย 4, 843โ857. MR 2545869, DOI 10.1007/s00208-009-0380-2
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- H. Iwaniec and P. Michel, The second moment of the symmetric square $L$-functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), no.ย 2, 465โ482. MR 1833252
- Rizwanur Khan, The first moment of the symmetric-square $L$-function, J. Number Theory 124 (2007), no.ย 2, 259โ266. MR 2321361, DOI 10.1016/j.jnt.2006.09.010
- Winfried Kohnen and Jyoti Sengupta, Nonvanishing of symmetric square $L$-functions of cusp forms inside the critical strip, Proc. Amer. Math. Soc. 128 (2000), no.ย 6, 1641โ1646. MR 1676328, DOI 10.1090/S0002-9939-99-05419-2
- Yuk-Kam Lau, Non-vanishing of symmetric square $L$-functions, Proc. Amer. Math. Soc. 130 (2002), no.ย 11, 3133โ3139. MR 1912989, DOI 10.1090/S0002-9939-02-06712-6
- Yuk-Kam Lau and Kai-Man Tsang, A mean square formula for central values of twisted automorphic $L$-functions, Acta Arith. 118 (2005), no.ย 3, 231โ262. MR 2168765, DOI 10.4064/aa118-3-2
- Xian-Jin Li, On the poles of Rankin-Selberg convolutions of modular forms, Trans. Amer. Math. Soc. 348 (1996), no.ย 3, 1213โ1234. MR 1333393, DOI 10.1090/S0002-9947-96-01540-1
- Goro Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. (3) 31 (1975), no.ย 1, 79โ98. MR 382176, DOI 10.1112/plms/s3-31.1.79
Bibliographic Information
- Qingfeng Sun
- Affiliation: School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, Peopleโs Republic of China
- Email: qfsun@mail.sdu.edu.cn
- Received by editor(s): November 7, 2010
- Published electronically: November 6, 2012
- Additional Notes: The author was supported by the National Natural Science Foundation of China (Grant No. 11101239).
- Communicated by: Ken Ono
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 369-375
- MSC (2000): Primary 11F67
- DOI: https://doi.org/10.1090/S0002-9939-2012-11564-3
- MathSciNet review: 2996941