Unitary $N$-dilations for tuples of commuting matrices
HTML articles powered by AMS MathViewer
- by John E. McCarthy and Orr Moshe Shalit
- Proc. Amer. Math. Soc. 141 (2013), 563-571
- DOI: https://doi.org/10.1090/S0002-9939-2012-11714-9
- Published electronically: June 11, 2012
- PDF | Request permission
Abstract:
We show that whenever a contractive $k$-tuple $T$ on a finite dimensional space $H$ has a unitary dilation, then for any fixed degree $N$ there is a unitary $k$-tuple $U$ on a finite dimensional space so that $q(T) = P_H q(U) |_H$ for all polynomials $q$ of degree at most $N$.References
- Jim Agler and John E. McCarthy, Distinguished varieties, Acta Math. 194 (2005), no. 2, 133–153. MR 2231339, DOI 10.1007/BF02393219
- T. Andô, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24 (1963), 88–90. MR 155193
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no. 3-4, 271–308. MR 394232, DOI 10.1007/BF02392166
- William Arveson, Dilation theory yesterday and today, A glimpse at Hilbert space operators, Oper. Theory Adv. Appl., vol. 207, Birkhäuser Verlag, Basel, 2010, pp. 99–123. MR 2743416, DOI 10.1007/978-3-0346-0347-8_{8}
- Joseph A. Ball, Cora Sadosky, and Victor Vinnikov, Scattering systems with several evolutions and multidimensional input/state/output systems, Integral Equations Operator Theory 52 (2005), no. 3, 323–393. MR 2184571, DOI 10.1007/s00020-005-1351-y
- Dariusz Cichoń, Jan Stochel, and Franciszek Hugon Szafraniec, Extending positive definiteness, Trans. Amer. Math. Soc. 363 (2011), no. 1, 545–577. MR 2719693, DOI 10.1090/S0002-9947-2010-05268-7
- Kenneth R. Davidson and Allan P. Donsig, Real analysis and applications, Undergraduate Texts in Mathematics, Springer, New York, 2010. Theory in practice. MR 2568574, DOI 10.1007/978-0-387-98098-0
- S. W. Drury, Remarks on von Neumann’s inequality, Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981) Lecture Notes in Math., vol. 995, Springer, Berlin, 1983, pp. 14–32. MR 717226, DOI 10.1007/BFb0061886
- E. Egerváry, On the contractive linear transformations of $n$-dimensional vector space, Acta Sci. Math. (Szeged) 15 (1954), 178–182. MR 64737
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- John A. Holbrook, Inequalities of von Neumann type for small matrices, Function spaces (Edwardsville, IL, 1990) Lecture Notes in Pure and Appl. Math., vol. 136, Dekker, New York, 1992, pp. 189–193. MR 1152347
- E. Levy and O. M. Shalit, Dilation theory in finite dimensions: the possible, the impossible and the unknown, preprint, arXiv:1012.4514v1, 2010. To appear in Rocky Mountain J. of Math.
- David Opěla, A generalization of Andô’s theorem and Parrott’s example, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2703–2710. MR 2213750, DOI 10.1090/S0002-9939-06-08303-1
- Stephen Parrott, Unitary dilations for commuting contractions, Pacific J. Math. 34 (1970), 481–490. MR 268710, DOI 10.2140/pjm.1970.34.481
- Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR 1976867
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Jan Stochel and Franciszek Hugon Szafraniec, Unitary dilation of several contractions, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 585–598. MR 1902903
- Béla Sz.-Nagy, Sur les contractions de l’espace de Hilbert, Acta Sci. Math. (Szeged) 15 (1953), 87–92 (French). MR 58128
Bibliographic Information
- John E. McCarthy
- Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130
- MR Author ID: 271733
- ORCID: 0000-0003-0036-7606
- Email: mccarthy@wustl.edu
- Orr Moshe Shalit
- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L–3G1, Canada
- Address at time of publication: Department of Mathematics, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel
- MR Author ID: 829657
- Email: oshalit@uwaterloo.ca, oshalit@math.bgu.ac.il
- Received by editor(s): June 30, 2011
- Published electronically: June 11, 2012
- Communicated by: Marius Junge
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 141 (2013), 563-571
- MSC (2010): Primary 47A20; Secondary 15A45, 47A57
- DOI: https://doi.org/10.1090/S0002-9939-2012-11714-9
- MathSciNet review: 2996961