## Unitary $N$-dilations for tuples of commuting matrices

HTML articles powered by AMS MathViewer

- by John E. McCarthy and Orr Moshe Shalit PDF
- Proc. Amer. Math. Soc.
**141**(2013), 563-571 Request permission

## Abstract:

We show that whenever a contractive $k$-tuple $T$ on a finite dimensional space $H$ has a unitary dilation, then for any fixed degree $N$ there is a unitary $k$-tuple $U$ on a finite dimensional space so that $q(T) = P_H q(U) |_H$ for all polynomials $q$ of degree at most $N$.## References

- Jim Agler and John E. McCarthy,
*Distinguished varieties*, Acta Math.**194**(2005), no. 2, 133–153. MR**2231339**, DOI 10.1007/BF02393219 - T. Andô,
*On a pair of commutative contractions*, Acta Sci. Math. (Szeged)**24**(1963), 88–90. MR**155193** - William B. Arveson,
*Subalgebras of $C^{\ast }$-algebras*, Acta Math.**123**(1969), 141–224. MR**253059**, DOI 10.1007/BF02392388 - William Arveson,
*Subalgebras of $C^{\ast }$-algebras. II*, Acta Math.**128**(1972), no. 3-4, 271–308. MR**394232**, DOI 10.1007/BF02392166 - William Arveson,
*Dilation theory yesterday and today*, A glimpse at Hilbert space operators, Oper. Theory Adv. Appl., vol. 207, Birkhäuser Verlag, Basel, 2010, pp. 99–123. MR**2743416**, DOI 10.1007/978-3-0346-0347-8_{8} - Joseph A. Ball, Cora Sadosky, and Victor Vinnikov,
*Scattering systems with several evolutions and multidimensional input/state/output systems*, Integral Equations Operator Theory**52**(2005), no. 3, 323–393. MR**2184571**, DOI 10.1007/s00020-005-1351-y - Dariusz Cichoń, Jan Stochel, and Franciszek Hugon Szafraniec,
*Extending positive definiteness*, Trans. Amer. Math. Soc.**363**(2011), no. 1, 545–577. MR**2719693**, DOI 10.1090/S0002-9947-2010-05268-7 - Kenneth R. Davidson and Allan P. Donsig,
*Real analysis and applications*, Undergraduate Texts in Mathematics, Springer, New York, 2010. Theory in practice. MR**2568574**, DOI 10.1007/978-0-387-98098-0 - S. W. Drury,
*Remarks on von Neumann’s inequality*, Banach spaces, harmonic analysis, and probability theory (Storrs, Conn., 1980/1981) Lecture Notes in Math., vol. 995, Springer, Berlin, 1983, pp. 14–32. MR**717226**, DOI 10.1007/BFb0061886 - E. Egerváry,
*On the contractive linear transformations of $n$-dimensional vector space*, Acta Sci. Math. (Szeged)**15**(1954), 178–182. MR**64737** - Béla Sz.-Nagy and Ciprian Foiaş,
*Harmonic analysis of operators on Hilbert space*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR**0275190** - John A. Holbrook,
*Inequalities of von Neumann type for small matrices*, Function spaces (Edwardsville, IL, 1990) Lecture Notes in Pure and Appl. Math., vol. 136, Dekker, New York, 1992, pp. 189–193. MR**1152347** - E. Levy and O. M. Shalit,
*Dilation theory in finite dimensions: the possible, the impossible and the unknown*, preprint, arXiv:1012.4514v1, 2010. To appear in Rocky Mountain J. of Math. - David Opěla,
*A generalization of Andô’s theorem and Parrott’s example*, Proc. Amer. Math. Soc.**134**(2006), no. 9, 2703–2710. MR**2213750**, DOI 10.1090/S0002-9939-06-08303-1 - Stephen Parrott,
*Unitary dilations for commuting contractions*, Pacific J. Math.**34**(1970), 481–490. MR**268710**, DOI 10.2140/pjm.1970.34.481 - Vern Paulsen,
*Completely bounded maps and operator algebras*, Cambridge Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR**1976867** - Walter Rudin,
*Function theory in polydiscs*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0255841** - Jan Stochel and Franciszek Hugon Szafraniec,
*Unitary dilation of several contractions*, Recent advances in operator theory and related topics (Szeged, 1999) Oper. Theory Adv. Appl., vol. 127, Birkhäuser, Basel, 2001, pp. 585–598. MR**1902903** - Béla Sz.-Nagy,
*Sur les contractions de l’espace de Hilbert*, Acta Sci. Math. (Szeged)**15**(1953), 87–92 (French). MR**58128**

## Additional Information

**John E. McCarthy**- Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130
- MR Author ID: 271733
- ORCID: 0000-0003-0036-7606
- Email: mccarthy@wustl.edu
**Orr Moshe Shalit**- Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L–3G1, Canada
- Address at time of publication: Department of Mathematics, Ben-Gurion University of the Negev, Be’er-Sheva 84105, Israel
- MR Author ID: 829657
- Email: oshalit@uwaterloo.ca, oshalit@math.bgu.ac.il
- Received by editor(s): June 30, 2011
- Published electronically: June 11, 2012
- Communicated by: Marius Junge
- © Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**141**(2013), 563-571 - MSC (2010): Primary 47A20; Secondary 15A45, 47A57
- DOI: https://doi.org/10.1090/S0002-9939-2012-11714-9
- MathSciNet review: 2996961