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ABSTRACT. Let D be an integral domain with quotient field K, * be a star-
operation on D, and GV*(D) be the set of finitely generated ideals J of D such
that Jx = D. Then the map #,, defined by I, = {x € K | Jx C I for some
J € GV*(D)} for all nonzero fractional ideals I of D is a finite character star-
operation on D. In this paper, we study several properties of %,-Noetherian
domains. In particular, we prove the Hilbert basis theorem for *,,-Noetherian
domains.

1. INTRODUCTION

For the sake of clarity, we first review some definitions and notation. Throughout
this paper, D denotes an integral domain with quotient field K and F(D) means
the set of nonzero fractional ideals of D. A star-operation on D is a mapping I + I,
from F(D) into itself which satisfies the following three conditions for all 0 # a € K
and all I, J € F(D):

(1) (aD)« = aD and (al), = al,,

(2) I C I, andif I C J, then I, C J,, and

(3) (L)« = L.
An I € F(D) is called a *-ideal if I = I,.. A x-ideal I is said to be of finite type if
I=(a1,...,an). for some (0) # (as,...,a,) C I. Given any star-operation * on D,
we can construct two new star-operations 4 and #,, induced by *. For all I € F(D),
the *s-operation is defined by I.. = U{(a1,...,an)« | (0) # (a1,...,a,) € I} and
the x,-operation is defined by I., = {z € K | Jr C I for some J € GV*(D)},
where GV*(D) is the set of nonzero finitely generated ideals J of D with J, = D. A
star-operation * on D is said to be of finite character if I, = I,_ for each I € F(D).
It is easy to see that the x -operation is of finite character. It is known that the
*,-operation is also a finite character star-operation on D [AC, Theorem 2.7]. Let
+' be a finite character star-operation on D. Recall that each prime ideal minimal
over a *'-ideal is a *’-ideal, and hence each height-one prime ideal is a *’-ideal. A
prime ideal which is a x-ideal is called a prime *-ideal. A x-ideal is called a mazimal
x-ideal of D if it is maximal among integral x-ideals of D. We denote by *-Max(D)
the set of maximal *-ideals of D. It is well known that a maximal *-ideal is a
prime ideal and that if D is not a field, then each integral *’-ideal is contained in
a maximal #'-ideal, and hence *’-Max(D) # (). The x-dimension of D, denoted by
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*-dim(D), is defined to be the supremum of {n € N| P, C --- C P, is a chain of
prime #-ideals of D}. Thus *-dim(D) = 1 if and only if each maximal *-ideal of D
has height one. When * = d, we write dim(D) rather than d-dim(D). (Recall that
the d-operation is the identity map on F(D), i.e., I — I4=1.)

Recall that D is called a x-Noetherian domain if D has the ascending chain
condition on integral x-ideals of D. It is well known that D is a *-Noetherian
domain if and only if every integral x-ideal of D is of finite type and that if D is
a x-Noetherian domain, then x = %, [Z Theorem 1.1]. We call D a strong Mori
domain (SM-domain) if * = w, a Mori domain if x = v, and a Noetherian domain
if * = d. (Recall that the v-operation is defined by I, = (I71)~! for all I € F(D)
(equivalently, T, is the intersection of principal fractional ideals of D containing I
|G, Theorem 34.1]), where I=! = {z € K | I C D}, and that the t-operation
(resp., w-operation) is the #-operation (resp., *,-operation) when * = v.) It is
clear that a Noetherian domain is an SM-domain and that an SM-domain is a Mori
domain. However, none of the converse statements hold (see [PT, Example 3.5]
and [Pl Theorems 7 and 10]). Recall that D is an Artinian domain if D has
the descending chain condition on integral ideals of D. It was shown that D is
an Artinian domain if and only if D is a 0-dimensional Noetherian domain [AM]
Theorem 8.5].

It is well known that a Noetherian domain possesses good properties. One of
them is the Hilbert basis theorem, which says that the polynomial ring over a
Noetherian domain is also Noetherian [K Theorem 69] (or [AM, Theorem 7.5]).
Later, this property was generalized to SM-domains by Fanggui and McCasland
[EM2, Theorem 1.13]. (Note that the Hilbert basis theorem does not carry over to
Mori domains |[R2l, Proposition 8.3].) So, it might be natural to ask whether a -
Noetherian domain analogue of this result holds or not. In fact, a *,-Noetherian
domain is a generalization of an SM-domain. An important purpose of this paper
is to give an affirmative answer to this question.

In Section 2, we study the *,,-operation on D. We prove that for a given torsion-
free D-module N, Np = (N, )p for any prime *,-ideal P of D. As a corollary,
we show that a *,-Noetherian domain satisfies the (generalized) principal ideal
theorem for x,,-Noetherian domains. Moreover, as the star-operation analogue of
H-domains, we define a #-H-domain whose class contains *,,-Noetherian domains,
and we give a characterization of *-H-domains.

In Section 3, we investigate *.,-Noetherian domains. We give the Hilbert basis
theorem for x,-Noetherian domains. We also find a sufficient condition for the
domain D to be a *,-Noetherian domain.

For any undefined terminology or notation, see [Gl [K]. The reader can refer to
[A1l [G] for star-operations on integral domains and to [AC]| for ,-operations on
integral domains.

2. THE #,-OPERATIONS
We start this section by reviewing two facts about *,,-operations on D.

Lemma 2.1. The following assertions hold.

(1) Let I e F(D). ThenIC I, CI. CI, andI., CI,.
(2) D is a *y-Noetherian domain if and only if each prime x,-ideal of D is of
finite type.
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Proof. (1) The containments I C I, and I, C I, follow from their definitions.
If z € I,,, then there exists a J € GV*(D) such that «J C I. So z € zD =
xJ. = (&J)s = (¢J)«, C I . Therefore I,, C I... Thus I C I, C I, C I..
The second inclusion I., C I, follows from the fact that for any J € F(D),
J.CJ,=(JH 1 CD.

(2) This is [C, Theorem 2.6]. O

Let %1 and *9 be finite type star-operations on D. Following [A2], we say that %;
is coarser than *o (denoted by %1 < x9) if I, C I, for all I € F(D) (equivalently,
each xo-ideal is a *;-ideal). Then < is a partial order on the star-operations on D.
It is clear that if x; < x5, then a x{-Noetherian domain is a *5-Noetherian domain.
Recall that a domain D is called a Krull domain if the following three properties
hold: (1) D = () Dp, where P runs over the height-one prime ideals of D, (2) for
each height-one prime ideal P of D, Dp is a (rank-one) discrete valuation domain
and (3) each nonzero element of D is a unit in Dp for almost all height-one prime
ideals P of D.

Corollary 2.2. Let D be a *,-Noetherian domain. Then D is both an SM-domain
and a x-Noetherian domain. Therefore a completely integrally closed *,,-Noetherian
domain is a Krull domain.

Proof. The first assertion is an immediate consequence of Lemma [2I[(1). The
second statement follows from the fact that a completely integrally closed SM-
domain is a Krull domain [FM1], Theorem 5.4]. O

An ideal J of D is called a Glaz-Vasconcelos-ideal (GV-ideal) of D if J is finitely
generated and J~! = D. For any star-operation *, we call an ideal J of D a *-
GV -ideal if J is finitely generated and J, = D. Recall that GV*(D) is the set of
*-GV-ideals of D. We give some basic properties of GV*(D).

Lemma 2.3. Let x be a star-operation on D. Then the following statements hold.
(1) D e GV*(D).
(2) Let I and J be finitely generated ideals of D with I C J. If I € GV*(D),
then J € GV*(D).
(3) If I and J belong to GV*(D), then so does I.J.

Proof. (1) This is obvious.

(2) Since I € GV*(D), D =1, C J, C D, i.e.,, J, = D. Since J is finitely
generated, J € GV*(D).

(3) Tt is clear that I.J is finitely generated. Note that D = I.J, C (I.J), C D.
Hence (IJ), = D, and thus I.J € GV*(D). O

Lemma 2.4. Let J be a finitely generated ideal of D. Then J € GV*(D) if and
only if J.,, = D.

Proof. (=) The containment J., C D is obvious. Note that J1 C J. Since
J e GVv*(D), 1€ J,,. Thus J.,6 = D.

(<) If J., =D, then D =J,, CJ,C D by Lemma21l So J. = D. Since J is
finitely generated, J € GV*(D). O
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Corollary 2.5. The following statements are equivalent.

(1) Ewery maximal ideal of D is a %, -ideal.
(2) GV*(D) ={Dj}.

(3) Every nonzero ideal of D is a *.-ideal.

Proof. (1) = (2) By Lemma23[(1), D € GV*(D). Let J € GV*(D). If J C M for

some maximal ideal M of D, then D = J,, C M,, = M by Lemma 24 and (1).

This is absurd, and hence J ¢ M for any maximal ideal M of D. Thus J = D.
(2) = (3) = (1) These are obvious. O

Corollary 2.6 (cf. [AC|, Theorem 2.15]). Let Q be a P-primary ideal of D for
some prime ideal P of D. Then either Q., = Q or Q«, = D.

Proof. Suppose to the contrary that Q., # @ and Q., # D. Then there exists
an element x € Q., — Q; so there exists a J € GV*(D) such that Jx C Q. Since
x & Q,J C P. Write J = (j1,...,Jn). Since @ is P-primary, for each 1 < i < n,
there exists a positive integer m,; such that j** € Q. Let m = mq +---+m,,. Then
J™ C @, and hence by Lemma 24 D = (J,,)™ C (J™)«, C Q«, S D, which is

=

impossible. Thus Q., = Q or Q., = D. N

In [GV], Glaz and Vasconcelos first introduced the concept of an H-domain. A
domain D is called an H-domain if every ideal I of D with I~! = D is quasi-finite,
i.e., if there exists a J € GV?(D) such that J C I. As the star-operation analogue
of H-domains, we say that D is a %-H-domain if every ideal I of D satisfying
I. = D contains a member of GV*(D). In this case, I is said to be x-quasi-finite.
It is known that a Cohen type theorem holds for H-domains; i.e., we restrict I in
the definition of an H-domain to prime ideals [GV] (3.2a)]. Now we prove that the
*- H-domain analogue of this result holds.

Proposition 2.7. D is a *x-H-domain if and only if every prime ideal P of D with
P, = D contains a member of GV*(D).

Proof. (=) This is clear.

(<) Let A= {I|Iisanideal of D such that I, = D but I does not contain any
member of GV*(D)} and suppose that A # (. Then A is partially ordered under
inclusion C and is inductive under this ordering. By Zorn’s lemma, A contains
a maximal element P. We claim that P is a prime ideal of D. Assume that
aras € Pyay ¢ P and as ¢ P. Then for each i = 1,2, (P,a;) is not a member
of A, and consequently there exists a J; € GV*(D) such that J; C (P,a;). By
Lemma 23(3), J1J2 € GV*(D). Since P contains J; J2, this contradicts the choice
of P. Thus A = (), which proves this result. O

Recall that every SM-domain is an H-domain [HZ, Proposition 2.4]. We give
the x,,-Noetherian domain version of this statement.

Proposition 2.8. A x,,-Noetherian domain is a x-H-domain.

Proof. Let D be a #,,-Noetherian domain and I be an ideal of D with I, = D. Then
1., = J., for some finitely generated subideal J C I, and hence D = I, = J,, i.e.,
J € GV*(D). Therefore D is a *-H-domain. O

If * = v, then a v-H-domain coincides with an H-domain and a v,-Noetherian
domain is an SM-domain. Thus the next proposition generalizes [FMIl Proposi-
tion 5.7].
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Proposition 2.9. D is a x-H-domain if and only if every maximal *,,-ideal of D
18 a *-ideal.

Proof. (=) Assume that D is a x-H-domain and let M be a maximal *,,-ideal of D.
If M # M., then M, = D (cf. Corollary ZG]). Since D is a *-H-domain, there exists
a J € GV*(D) such that J C M. Hence by Lemma24 D = J,, C M, 6 = M,
which is absurd. Thus M = M, is a *-ideal.

(<) Assume that every maximal #,-ideal of D is a *-ideal and let I be an
ideal of D such that I, = D. If I is contained in a maximal *,-ideal M, then
D =1, C M, = M, which is impossible. So no maximal #,,-ideals contain I, and
hence I, = D. Since 1 € I, , there exists a J € GV*(D) such that J = J1 C I.
Thus D is a *-H-domain. (]

w

Let N be a torsion-free D-module. As in the integral domain case, we can define
a star-operation *, on N to be the set N., = {z € Np_{o} | Jr C N for some
J € GV*(D)} [ACL Section 4]. Note that for * = v, we have N,,6 = N, the
w-envelope of N [FMI] Definition 3]. In JACl Theorem 4.3], Anderson and Cook
showed that (N., )y = N for each M € #,-Max(D). The next proposition
extends their result to any prime x,,-ideal of D.

Proposition 2.10. Let N be a torsion-free D-module. Then Np=(N, )p for any
prime *,-ideal P of D.

Proof. By Lemma [Z(1), we have Np C (N, )p. For the reverse, it suffices to
show that N,, C Np. Let d € N, . Then there exists a J € GV*(D) such that
Jd C N. Note that J,, = D by Lemma 24 If J C P, then D =J,, C P,, = P,
which yields a contradiction. This means that J ¢ P. Therefore d € Np, and
hence N, C Np. Thus (N,,)p = Np. O

w

The next two corollaries are immediate consequences of Proposition 2101 The
proofs are easy, so we omit them.

Corollary 2.11 ([AC| Theorem 4.3]). Let N be a torsion-free D-module. Then
N,, = ﬂME*w_MaX(D) Nyr. In particular, D = ﬂME*w_MaX(D) Dyy.

Corollary 2.12. The following statements are equivalent for the torsion-free D-
modules A and B.

(1) A., = B.,,.

(2) Ap = Bp for any prime x-ideal P of D.

(3) Apr = By for any maximal xy-ideal M of D.

By Proposition .10, if N is of *,-finite type, then Np is a finitely generated
Dp-module for any prime *,,-ideal P of D. Thus we recover

Corollary 2.13 (cf. [All Corollaries 4.2 and 4.3]). If D is a *,,-Noetherian domain,
then Dy is a Noetherian domain for each M € *,,-Max (D).

Recall that D is said to be of *,,-finite character if each nonzero nonunit of D is
contained in only a finite number of maximal *,,-ideals of D, i.e., if the intersection
D = ﬂME*W_MaX(D) Dy has finite character. Let D be a x,-Noetherian domain
with #,,-dim(D) = 1. Then D is an SM-domain, and hence D is of w-finite character
[EM2, Theorem 1.9]. Since *,,-dim(D) = 1, it is easy to see that x,,-Max(D) = w-
Max(D). Thus D has *,,-finite character. However, if D is a *,,-Noetherian domain
with #,,-dim(D) > 2, then D need not be of *,,-finite character (see Example B7).
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Corollary 2.14. If D is a one-dimensional *,-Noetherian domain, then D is
Noetherian.

Proof. Note that *,,-Max(D) =Max(D) since dim(D) = 1. Thus the result is an
immediate consequence of Corollary [Z13] and [K| Section 2.3, Exercise 10]. |

When # = v, Corollary [ZT4] recovers [EM2], Corollary 1.10].

Corollary 2.15 ([FEM2| Corollary 1.10]). If D is a one-dimensional SM-domain,
then D is Noetherian.

The generalized principal ideal theorem (GPIT) states that in a Noetherian
domain D, if P is a prime ideal of D minimal over an n-generated ideal, then
ht(P) < n [K| Theorem 152]. (Recall that when n = 1, this theorem is well known
as Krull’s principal ideal theorem (PIT) [Kl Theorem 142].) This was generalized
to SM-domains by Fanggui and McCasland [FM2, Corollary 1.12]. They proved
that in an SM-domain D, a prime ideal of D minimal over a w-ideal (a1, ..., an)w
has height at most n. (Note that the PIT does not carry over to Mori domains
(IBAD| Remark 3.6(c)] and [K| Section 3.2, Exercise 8]).) By Anderson and Cook,
it was shown that *,,-Noetherian domains also satisfy the GPIT [AC] Corollary 3.7].
By Corollary 2.13] we can revisit the same results as corollaries. Before proving
Corollary 217, we review the following lemma.

Lemma 2.16 ([C] Corollary 2.7(2)]). Each *,,-ideal of a %,,-Noetherian domain D
has a finite number of minimal prime ideals.

Corollary 2.17. Let D be a *,,-Noetherian domain.

(1) (PIT for x4-Noetherian domains) Let a be a nonzero nonunit element of
D. If P is a prime ideal of D minimal over (a), then ht(P) < 1.

(2) (GPIT for *,-Noetherian domains) Let T = (a1,...,an)x, be a xy-finite
ideal of D. If P is a prime ideal of D minimal over I, then ht(P) < n.

(3) Assume that P is a prime *,,-ideal of D with ht(P) = n. Then P is minimal
over an n-generated ideal of D.

Proof. (1) Let P be a prime ideal minimal over (a). Then P is a #,,-ideal of D, and
hence there exists a maximal x,-ideal M containing P. By Corollary I3l D, is
a Noetherian domain, and note that PD); is a prime ideal of Dj; minimal over
aDpr. By PIT, ht(PDjys) < 1. Thus ht(P) < 1.

(2) Let P be a prime ideal minimal over I. Then P is a *,-ideal of D, and
hence there exists a maximal x,-ideal M containing P. By Corollary 213l D, is
a Noetherian domain, and note that PD,; is a prime ideal of Dj); minimal over
IDys. Thus ht(P) =ht(PDys) < n by GPIT.

(3) Let (0) C P, € --- C P, = P be a chain of prime ideals of D. If P; # (P;).,
for some 1 < i <n —1, then (P;)., = D by Corollary So D = (F)., C P,
which is a contradiction. Hence each P; is also a *.-ideal. Let 0 # a1 € P;.
By Lemma 216 there exist finitely many prime ideals minimal over (ay), say
Q1,-..,Qm. If n =1, then the statement follows from (1). Suppose that n > 2
and set Q@ = [J;~, Q;. Then P, ¢ Q [K| Theorem 83]. Let as € P, — Q. Then P,
is minimal over (a1, az), and hence ht(P2) < 2 by (2). Since P, contains the chain
(0) € Py, ht(Py) > 2. Therefore ht(P2) = 2. Repeating this process, we can choose
some suitable elements a1, ..., a, € P so that P is minimal over (ai,...,a,). O

*a
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3. MAIN RESULTS

Let % be a star-operation on D[X]. Then # induces a star-operation * on D
defined by I — I[X]. N K for each I € F(D) [M2, Proposition 2.1]. From now on,
we refer to this induced star-operation as *. Note that if * is of finite type, then so
is *.

Lemma 3.1. Let x be a star-operation on D[X]. If J € GV*(D), then J[X] €
GV*(D[X]).

Proof. Since J € GV*(D), Jz = D. Hence (J[X]). = (J5[X])« = D[X], where the
first equality follows from [M2] Proposition 2.1]. Since J is finitely generated in D,
so is J[X] in D[X]. Thus J[X] € GV*(D[X]). O

It is well known as the Hilbert basis theorem that if D is a Noetherian domain,
then the polynomial ring D[X] is also a Noetherian domain [Kl, Theorem 69] (or
[AM| Theorem 7.5]). This was generalized to SM-domains, and the statement is
that if D is an SM-domain, then so is D[X] [FM2, Theorem 1.13]. Note that if
* is the v-operation on D[X], then % is the v-operation on D [M2, Remark 2.2];
SO *,, (resp., %,) is exactly the same as the w-operation on D[X] (resp., D) [HH,
Proposition 4.3]. Thus the next theorem is a generalization of the Hilbert basis
theorem for SM-domains.

Theorem 3.2 (The Hilbert basis theorem for x,-Noetherian domains). Let * be
a star-operation on D[X]. If D is a %,-Noetherian domain, then D[X] is a -
Noetherian domain.

Proof. Let H be a #,-ideal of D[X] and let I, be the set of leading coefficients of
all polynomials of degree r in H, where r runs over all nonnegative integers. Then
it is easy to see that {I,},>¢ is an ascending chain of ideals of D. Since D is a %,,-
Noetherian domain, there exists a nonnegative integer m such that (I,,)x, = (Im )=,
for all n > m. Also, since D is *,,-Noetherian, for each 0 < r < m, I, is of %,,-finite
type; so we can write (I.)z, = (ar1,...,0rn, )5,, Where a1, ...,am,, € I.. Then
there exists a polynomial f,.; € H whose leading coefficient is a;.

Claim. H = ({fri |0 <r <mand 1 < i < n,}),,. The containment ({f; |
0<r<mandl<i<n.}),, C H is trivial. For the converse, let f € H. If
f =0, then there is nothing to prove. Assume that f # 0. We use the induction
on the degree of f. It is clear when f is a constant. Suppose that this theorem is
true for the degree of f less than [. Let f be a polynomial of degree [ with leading
coefficient a. Assume that [ > m. Then a € (I})%, = (Im)%,, and hence there
exists an element B = (by,...,b;) € GV*(D) such that Ba C (am1,---,0mn,, )-
So, for each 1 < i < k, we can write b;a = Z?Zi CijGmj, where ¢;; € D. Set
g =bif — Z?:l ci; X' i for each 1 < i < k. Then the degree of g; is less than
[. If I < m, then a € (I})%,, and hence we can construct polynomials g; whose
degrees are less than [ by using the similar argument above. In both cases, by the
induction hypothesis, g; € ({fr: | 0 <r <mand 1 < i < n,}),,. Hence for each
1 <4 <k, we can find a J; € GV*(D[X]) such that J;g; C ({fri | 0 <7 <m
and 1 < i < n,}). Set J = Jy---J;. Then BJf C ({frs | 0 < r < m and
1 <i < mn,}), which implies that B[X]Jf C ({frs |0 <r <m and 1 <i < n,}).
By Lemma Bl B[X] € GV*(D[X]) and by Lemma [Z33), B[X]J € GV*(D[X]).
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Therefore f € ({frs |0 <r<mand 1<i<n.}),,ie, HC{fri|0<r<m
and 1 <4 < n,}),,. Hence the claim is proved.

Since each x,-ideal of D[X] is of finite type, we conclude that D[X] is a -
Noetherian domain. (]

Lemma 3.3. For any nonzero integral ideal I of D, Ir = Ix

*ap

Proof. Let a € I Then a € (I[X]),, N K; so there exists a J € GV*(D[X]) such
that Ja C I[X]. Let C be the ideal of D generated by coefficients of generators
of J. Then Cs = (C[X])«NK 2 J.NK = D, and hence Cx = D. Clearly, C
is finitely generated. Therefore C' € GV*(D). Since Ca C I, we have a € I5,.
Thus I+ C I5,. Conversely, if b € Iz, then there exists a J € GV*(D) such that
Jb C I so bJ[X] C I[X]. By Lemmal31] J[X] € GV*(D[X]), which indicates that
be (I[X))«, N K = I+ Hence Iz, C Iz, and thus the equality holds. O

*”UJ

By Lemma [3:3] the concept of a *%,-Noetherian domain is the same as that of a
*w-Noetherian domain. Thus we have

Corollary 3.4. For a star-operation x on D[X], if D is a %, -Noetherian domain,
then D[X] is a *,-Noetherian domain.

Remark 3.5. It is natural to ask whether the Hilbert basis theorem for *,-Noetherian
domains holds or not. However, it was already shown that the answer is negative.
When * = v, Roitman proved that there exists a domain D containing a countable
field such that D is Mori but D[X] is not Mori [R2, Theorem 8.4]. For the interested
readers, we also mention that if D is an integrally closed Mori domain, then D[X]
is a Mori domain [Q}, §3, Théoréme 5] and that if D is a Mori domain containing
an uncountable field, then D[X] is a Mori domain [R1, Theorem 3.15].

Now, we would like to characterize #*,-Noetherian domains. It is well known
that D is a Noetherian domain (resp., SM-domain) if and only if Dy, is Noetherian
for all M € Max(D) (resp., M € w-Max(D)) and any nonzero element of D lies
in only finitely many maximal ideals (resp., maximal w-ideals) [Kl Section 2.3,
Exercise 10] (resp., [FM2, Theorem 1.9]). Motivated by these results, we study the
*,,-Noetherian domain analogue.

Theorem 3.6 (cf. Corollary ZT3). Assume that Dys is a Noetherian domain for
each mazimal *-ideal M of D and that D is of *,-finite character. Then D is a
*,,-Noetherian domain.

Proof. Assume that Dy, is a Noetherian domain for every M € %,-max(D) and
let I be a prime #,-ideal of D. Choose any nonzero element a € I. Since D is
of *,-finite character, there exists only a finite number of maximal *,,-ideals of
D containing a, say Mi,...,M,. Since Dy, is Noetherian for each 1 < i < n,
IDy, = (a1, -y Qim,; ) Dy, for some a;1,...,a;m, € I. Let C be the ideal of D
generated by a and all a;;. Then C is a finitely generated ideal of D which is
contained in I. Hence CDy;, = IDyy, for each 1 < ¢ < n. Let M’ be a maximal
x,-ideal such that M’ # M; for all 1 <4 < n. Then we have a ¢ M’, and hence
CDyyr = Dy = 1Dy Thus CDyy = IDyy for all M € *,-max(D). It follows
from Corollary that I = C,,. This means that every prime #,-ideal of D is
of finite type. Thus D is a *,-Noetherian domain by Lemma 2T)(2). O
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It is worth remarking at this point that Noetherian domains (resp., SM-domains)
have finite character (resp., w-finite character), and this property plays a significant
role when many mathematicians verify some famous theorems (for example, Mati-
jevic’s theorem [M1l, Corollary] and the Krull-Akizuki theorem [K| Theorem 93] (or
[Nl Theorem 33.2])). The next example shows that a *,-Noetherian domain need
not have x,,-finite character. Therefore the converse of Theorem is not true in
general.

Example 3.7. This example is due to [Cl Example 4.5]. Let K be a field, X =
{X; | i € N} be a set of indeterminates over K, D = K[X], and P,, be the set of
prime ideals P of D with ht(P) = n. For each n > 1, let x,, be the star-operation on
D defined by I., = (\pep, IDp for all I € F(D). Then D is a (*,),-Noetherian
domain with (#,),-dim(D) = n. We also note that (%,),-Max(D) = P,. Fix
n > 2. For each i > n, set P, = (X1,...,Xpn-1,X;). Then ht(P;) = n, and
hence P; is a maximal (*,,),-ideal of D containing X1, i.e., X; belongs to infinitely
many maximal (%, ),-ideals (X1,...,X,—1,X;) of D, where ¢ > n. Thus if (%, )q,-
dim(D) > 2, then D does not have (%, ),-finite character.

It was shown that D is an SM-domain with w-dim(D) = 1 if and only if for
every nonzero w-ideal I of D, every descending chain of w-ideals of D containing
I is stationary [FM2l Theorem 3.2]. We extend this result to the %,,-Noetherian
domain.

Theorem 3.8. The following assertions are equivalent.

(1) D is a *q-Noetherian domain with *,-dim(D) = 1.
(2) For any nonzero *,,-ideal I of D, every descending chain of *,,-ideals of D
containing I stabilizes.

Proof. As mentioned before Corollary 214l we note again that a *,-Noetherian
domain with #,,-dim(D) = 1 has x,,-finite character.

(1) = (2) Let {I,, }nen be a descending chain of *,,-ideals of D containing I. Since
D is a #,-Noetherian domain with *,,-dim(D) = 1, there exist only finitely many
maximal s,,-ideals containing I, say M, ..., M,. Also, for each 1 <i <mn, Dy, is
a Noetherian domain with dim(Dpy,/IDyy,) = 0 by Corollary Therefore for
each 1 <14 < n, Dy, /1Dy, is an Artinian domain [AM| Theorem 8.5], and hence
we can find a positive integer m, such that Iy Dy, = I,,, Dy, for all E > m;. Set
m =max{mi,...,my,}, and then we have I};Dy;, = I,,Dpy, for all kK > m and all
1 <i<n. Let M’ be a maximal *,,-ideal such that M’ # M; for alli =1,...,n.
Since I ¢ M, we have I, Dyp = Dy = I, Dy for every k > 1. By Corollary 212
I, = I, for all k > m. Thus the chain {I,, }en is stationary.

(2) = (1) First, we show that D is a *,,-Noetherian domain. Let M be a maximal
*,,-1deal of D and I be a *,-ideal of D contained in M.

Claim 1. Dp/IDys is an Artinian domain. Let {J,},en be a descending chain
of ideals of Dj; which contain ID,; and set I,, = J,, N D for each n > 1. Then
{(In)+, Inen is a descending chain of #,,-ideals of D containing I. By (2), this chain
stabilizes, and hence there exists a positive integer m such that (Ip,)s, = (Im)x,
for all n > m. By Proposition ZI0] J, = I,Dy = (In)«, Dy = (Im)sw, Dy =
I,Dy = Jyp, for all n > m. Therefore the descending chain {J;, },en stabilizes, and
hence Dy;/IDyy is an Artinian domain.
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Claim 2. D)y is a Noetherian domain. Let {C),},en be an ascending chain of
nonzero ideals of Dy;. Set I = Cy N D. Then I is a nonzero ideal of D and by
Proposition 20, 1., Dy = IDy = Cy. Tt follows from Claim 1 that Dy /Ch is
an Artinian domain; so Dj;/Cy is Noetherian [AM] Theorem 8.5]. Thus D), is a
Noetherian domain [El Lemma 4].

Let d be a nonzero nonunit element of D. If D does not have *,,-finite character,
then there is an infinite set {M,}nen of maximal #,-ideals of D containing d; so
{Qn = N}_; M;}nen is a descending chain of #,-ideals of D containing (d). By
(2), there exists an m > 1 such that Q,, = Q,,+1. Since each M,, is a maximal
xp-ideal of D, My,11 = M; for some 1 < i < m. This is a contradiction. Therefore
d belongs to only a finite number of maximal *.,-ideals of D. Thus Theorem
indicates that D is a *,-Noetherian domain.

Next, we show that #,-dim(D) = 1. Let M be a maximal *,-ideal of D and
choose any nonzero element a € M. By Claim 1, Dy;/aDy; is Artinian, whence
dim(Dyps/aDpr)=0 [AM| Theorem 8.5]. Therefore M D,y is the only minimal prime
ideal over aDjs, and hence ht(M Djs) = 1. This means that ht(M) = 1, and thus
we conclude that *,,-dim(D) = 1. O

Corollary 3.9. Let D be a *,-Noetherian domain with *,-dim(D) = 1 and let
I be a nonzero *-ideal of D. Then Dy /1Dy is an Artinian domain for each
mazimal *,,-ideal M which contains I.

Proof. The proof comes from (1) = (2) in Theorem 3.8 O

In [Cl Section 3], the x-global transform of D is defined to be the set D*9 =
{re K| M - Myx C D for some M; € xs-Max(D)}. Then D*9 is an overring of
D and D*9 = D*<9 = D*»9 5o the concept of *,-global transform coincides with
that of #-global transform. We are closing this article with a simple result about
the x,,-global transform of D.

Proposition 3.10. If D is a *,-Noetherian domain with *,-dim(D) = 1, then
D*w9 = K.

Proof. By the definition of D*»9 it is clear that D*»9 C K, and so it remains
to show that K C D*w9. Let x € K. If x € D, then there is nothing to prove.
Assume that @ ¢ D and set I = {y € D | xzy € D}. Note that I # D because
x ¢ D, and hence [ is a *,-ideal of D. Since D has x,-finite character, there are
only a finite number of maximal *,-ideals containing I, say M,...,M,. Since
D is a *,-Noetherian domain, for each 1 < ¢ < n, we can find a finitely gener-
ated ideal J; C M; of D such that M; = (J;)«,. Then Jy---J, € My--- M, C
N, M; = /I, where the equality holds because *,,-dim(D) = 1. Tt is obvious that
Ji -+ J, is finitely generated, and hence there exists a positive integer m such that
(Jp---Jn)™ C I. Therefore (My---Mp)™)w, = (J1+ - Jn)™)s, C I, = I. Thus

ko =

we conclude from the definition of I that z € D*w9. O
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