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A NOTE ON ∗w-NOETHERIAN DOMAINS
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Abstract. Let D be an integral domain with quotient field K, ∗ be a star-
operation on D, and GV ∗(D) be the set of finitely generated ideals J of D such
that J∗ = D. Then the map ∗w defined by I∗w = {x ∈ K | Jx ⊆ I for some
J ∈ GV ∗(D)} for all nonzero fractional ideals I of D is a finite character star-
operation on D. In this paper, we study several properties of ∗w-Noetherian
domains. In particular, we prove the Hilbert basis theorem for ∗w-Noetherian
domains.

1. Introduction

For the sake of clarity, we first review some definitions and notation. Throughout
this paper, D denotes an integral domain with quotient field K and F(D) means
the set of nonzero fractional ideals of D. A star-operation on D is a mapping I �→ I∗
from F(D) into itself which satisfies the following three conditions for all 0 �= a ∈ K
and all I, J ∈ F(D):

(1) (aD)∗ = aD and (aI)∗ = aI∗,
(2) I ⊆ I∗, and if I ⊆ J , then I∗ ⊆ J∗, and
(3) (I∗)∗ = I∗.

An I ∈ F(D) is called a ∗-ideal if I = I∗. A ∗-ideal I is said to be of finite type if
I = (a1, . . . , an)∗ for some (0) �= (a1, . . . , an) ⊆ I. Given any star-operation ∗ on D,
we can construct two new star-operations ∗s and ∗w induced by ∗. For all I ∈ F(D),
the ∗s-operation is defined by I∗s

=
⋃
{(a1, . . . , an)∗ | (0) �= (a1, . . . , an) ⊆ I} and

the ∗w-operation is defined by I∗w
= {x ∈ K | Jx ⊆ I for some J ∈ GV ∗(D)},

where GV ∗(D) is the set of nonzero finitely generated ideals J of D with J∗ = D. A
star-operation ∗ on D is said to be of finite character if I∗ = I∗s

for each I ∈ F(D).
It is easy to see that the ∗s-operation is of finite character. It is known that the
∗w-operation is also a finite character star-operation on D [AC, Theorem 2.7]. Let
∗′ be a finite character star-operation on D. Recall that each prime ideal minimal
over a ∗′-ideal is a ∗′-ideal, and hence each height-one prime ideal is a ∗′-ideal. A
prime ideal which is a ∗-ideal is called a prime ∗-ideal. A ∗-ideal is called a maximal
∗-ideal of D if it is maximal among integral ∗-ideals of D. We denote by ∗-Max(D)
the set of maximal ∗-ideals of D. It is well known that a maximal ∗-ideal is a
prime ideal and that if D is not a field, then each integral ∗′-ideal is contained in
a maximal ∗′-ideal, and hence ∗′-Max(D) �= ∅. The ∗-dimension of D, denoted by
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∗-dim(D), is defined to be the supremum of {n ∈ N | P1 � · · · � Pn is a chain of
prime ∗-ideals of D}. Thus ∗-dim(D) = 1 if and only if each maximal ∗-ideal of D
has height one. When ∗ = d, we write dim(D) rather than d-dim(D). (Recall that
the d-operation is the identity map on F(D), i.e., I �→ Id = I.)

Recall that D is called a ∗-Noetherian domain if D has the ascending chain
condition on integral ∗-ideals of D. It is well known that D is a ∗-Noetherian
domain if and only if every integral ∗-ideal of D is of finite type and that if D is
a ∗-Noetherian domain, then ∗ = ∗s [Z, Theorem 1.1]. We call D a strong Mori
domain (SM-domain) if ∗ = w, a Mori domain if ∗ = v, and a Noetherian domain
if ∗ = d. (Recall that the v-operation is defined by Iv = (I−1)−1 for all I ∈ F(D)
(equivalently, Iv is the intersection of principal fractional ideals of D containing I
[G, Theorem 34.1]), where I−1 = {x ∈ K | xI ⊆ D}, and that the t-operation
(resp., w-operation) is the ∗s-operation (resp., ∗w-operation) when ∗ = v.) It is
clear that a Noetherian domain is an SM-domain and that an SM-domain is a Mori
domain. However, none of the converse statements hold (see [PT, Example 3.5]
and [P, Theorems 7 and 10]). Recall that D is an Artinian domain if D has
the descending chain condition on integral ideals of D. It was shown that D is
an Artinian domain if and only if D is a 0-dimensional Noetherian domain [AM,
Theorem 8.5].

It is well known that a Noetherian domain possesses good properties. One of
them is the Hilbert basis theorem, which says that the polynomial ring over a
Noetherian domain is also Noetherian [K, Theorem 69] (or [AM, Theorem 7.5]).
Later, this property was generalized to SM-domains by Fanggui and McCasland
[FM2, Theorem 1.13]. (Note that the Hilbert basis theorem does not carry over to
Mori domains [R2, Proposition 8.3].) So, it might be natural to ask whether a ∗w-
Noetherian domain analogue of this result holds or not. In fact, a ∗w-Noetherian
domain is a generalization of an SM-domain. An important purpose of this paper
is to give an affirmative answer to this question.

In Section 2, we study the ∗w-operation on D. We prove that for a given torsion-
free D-module N , NP = (N∗w

)P for any prime ∗w-ideal P of D. As a corollary,
we show that a ∗w-Noetherian domain satisfies the (generalized) principal ideal
theorem for ∗w-Noetherian domains. Moreover, as the star-operation analogue of
H-domains, we define a ∗-H-domain whose class contains ∗w-Noetherian domains,
and we give a characterization of ∗-H-domains.

In Section 3, we investigate ∗w-Noetherian domains. We give the Hilbert basis
theorem for ∗w-Noetherian domains. We also find a sufficient condition for the
domain D to be a ∗w-Noetherian domain.

For any undefined terminology or notation, see [G, K]. The reader can refer to
[A1, G] for star-operations on integral domains and to [AC] for ∗w-operations on
integral domains.

2. The ∗w-operations
We start this section by reviewing two facts about ∗w-operations on D.

Lemma 2.1. The following assertions hold.

(1) Let I ∈ F(D). Then I ⊆ I∗w
⊆ I∗s

⊆ I∗ and I∗w
⊆ Iw.

(2) D is a ∗w-Noetherian domain if and only if each prime ∗w-ideal of D is of
finite type.
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Proof. (1) The containments I ⊆ I∗w
and I∗s

⊆ I∗ follow from their definitions.
If x ∈ I∗w

, then there exists a J ∈ GV ∗(D) such that xJ ⊆ I. So x ∈ xD =
xJ∗ = (xJ)∗ = (xJ)∗s

⊆ I∗s
. Therefore I∗w

⊆ I∗s
. Thus I ⊆ I∗w

⊆ I∗s
⊆ I∗.

The second inclusion I∗w
⊆ Iw follows from the fact that for any J ∈ F(D),

J∗ ⊆ Jv = (J−1)−1 ⊆ D.
(2) This is [C, Theorem 2.6]. �

Let ∗1 and ∗2 be finite type star-operations on D. Following [A2], we say that ∗1
is coarser than ∗2 (denoted by ∗1 ≤ ∗2) if I∗1

⊆ I∗2
for all I ∈ F(D) (equivalently,

each ∗2-ideal is a ∗1-ideal). Then ≤ is a partial order on the star-operations on D.
It is clear that if ∗1 ≤ ∗2, then a ∗1-Noetherian domain is a ∗2-Noetherian domain.
Recall that a domain D is called a Krull domain if the following three properties
hold: (1) D =

⋂
DP , where P runs over the height-one prime ideals of D, (2) for

each height-one prime ideal P of D, DP is a (rank-one) discrete valuation domain
and (3) each nonzero element of D is a unit in DP for almost all height-one prime
ideals P of D.

Corollary 2.2. Let D be a ∗w-Noetherian domain. Then D is both an SM-domain
and a ∗-Noetherian domain. Therefore a completely integrally closed ∗w-Noetherian
domain is a Krull domain.

Proof. The first assertion is an immediate consequence of Lemma 2.1(1). The
second statement follows from the fact that a completely integrally closed SM-
domain is a Krull domain [FM1, Theorem 5.4]. �

An ideal J of D is called a Glaz-Vasconcelos-ideal (GV -ideal) of D if J is finitely
generated and J−1 = D. For any star-operation ∗, we call an ideal J of D a ∗-
GV -ideal if J is finitely generated and J∗ = D. Recall that GV ∗(D) is the set of
∗-GV -ideals of D. We give some basic properties of GV ∗(D).

Lemma 2.3. Let ∗ be a star-operation on D. Then the following statements hold.

(1) D ∈ GV ∗(D).
(2) Let I and J be finitely generated ideals of D with I ⊆ J . If I ∈ GV ∗(D),

then J ∈ GV ∗(D).
(3) If I and J belong to GV ∗(D), then so does IJ .

Proof. (1) This is obvious.
(2) Since I ∈ GV ∗(D), D = I∗ ⊆ J∗ ⊆ D, i.e., J∗ = D. Since J is finitely

generated, J ∈ GV ∗(D).
(3) It is clear that IJ is finitely generated. Note that D = I∗J∗ ⊆ (IJ)∗ ⊆ D.

Hence (IJ)∗ = D, and thus IJ ∈ GV ∗(D). �

Lemma 2.4. Let J be a finitely generated ideal of D. Then J ∈ GV ∗(D) if and
only if J∗w

= D.

Proof. (⇒) The containment J∗w
⊆ D is obvious. Note that J1 ⊆ J . Since

J ∈ GV ∗(D), 1 ∈ J∗w
. Thus J∗w

= D.
(⇐) If J∗w

= D, then D = J∗w
⊆ J∗ ⊆ D by Lemma 2.1. So J∗ = D. Since J is

finitely generated, J ∈ GV ∗(D). �
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Corollary 2.5. The following statements are equivalent.

(1) Every maximal ideal of D is a ∗w-ideal.
(2) GV ∗(D) = {D}.
(3) Every nonzero ideal of D is a ∗w-ideal.

Proof. (1) ⇒ (2) By Lemma 2.3(1), D ∈ GV ∗(D). Let J ∈ GV ∗(D). If J ⊆ M for
some maximal ideal M of D, then D = J∗w

⊆ M∗w
= M by Lemma 2.4 and (1).

This is absurd, and hence J � M for any maximal ideal M of D. Thus J = D.
(2) ⇒ (3) ⇒ (1) These are obvious. �

Corollary 2.6 (cf. [AC, Theorem 2.15]). Let Q be a P -primary ideal of D for
some prime ideal P of D. Then either Q∗w

= Q or Q∗w
= D.

Proof. Suppose to the contrary that Q∗w
�= Q and Q∗w

�= D. Then there exists
an element x ∈ Q∗w

− Q; so there exists a J ∈ GV ∗(D) such that Jx ⊆ Q. Since
x �∈ Q, J ⊆ P . Write J = (j1, . . . , jn). Since Q is P -primary, for each 1 ≤ i ≤ n,
there exists a positive integer mi such that jmi

i ∈ Q. Let m = m1+ · · ·+mn. Then
Jm ⊆ Q, and hence by Lemma 2.4, D = (J∗w

)m ⊆ (Jm)∗w
⊆ Q∗w

� D, which is
impossible. Thus Q∗w

= Q or Q∗w
= D. �

In [GV], Glaz and Vasconcelos first introduced the concept of an H-domain. A
domain D is called an H-domain if every ideal I of D with I−1 = D is quasi-finite,
i.e., if there exists a J ∈ GV v(D) such that J ⊆ I. As the star-operation analogue
of H-domains, we say that D is a ∗-H-domain if every ideal I of D satisfying
I∗ = D contains a member of GV ∗(D). In this case, I is said to be ∗-quasi-finite.
It is known that a Cohen type theorem holds for H-domains; i.e., we restrict I in
the definition of an H-domain to prime ideals [GV, (3.2a)]. Now we prove that the
∗-H-domain analogue of this result holds.

Proposition 2.7. D is a ∗-H-domain if and only if every prime ideal P of D with
P∗ = D contains a member of GV ∗(D).

Proof. (⇒) This is clear.
(⇐) Let A = {I | I is an ideal of D such that I∗ = D but I does not contain any

member of GV ∗(D)} and suppose that A �= ∅. Then A is partially ordered under
inclusion ⊆ and is inductive under this ordering. By Zorn’s lemma, A contains
a maximal element P . We claim that P is a prime ideal of D. Assume that
a1a2 ∈ P, a1 �∈ P and a2 �∈ P . Then for each i = 1, 2, (P, ai) is not a member
of A, and consequently there exists a Ji ∈ GV ∗(D) such that Ji ⊆ (P, ai). By
Lemma 2.3(3), J1J2 ∈ GV ∗(D). Since P contains J1J2, this contradicts the choice
of P . Thus A = ∅, which proves this result. �

Recall that every SM-domain is an H-domain [HZ, Proposition 2.4]. We give
the ∗w-Noetherian domain version of this statement.

Proposition 2.8. A ∗w-Noetherian domain is a ∗-H-domain.

Proof. Let D be a ∗w-Noetherian domain and I be an ideal of D with I∗ = D. Then
I∗w

= J∗w
for some finitely generated subideal J ⊆ I, and hence D = I∗ = J∗, i.e.,

J ∈ GV ∗(D). Therefore D is a ∗-H-domain. �
If ∗ = v, then a v-H-domain coincides with an H-domain and a vw-Noetherian

domain is an SM-domain. Thus the next proposition generalizes [FM1, Proposi-
tion 5.7].
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Proposition 2.9. D is a ∗-H-domain if and only if every maximal ∗w-ideal of D
is a ∗-ideal.
Proof. (⇒) Assume that D is a ∗-H-domain and let M be a maximal ∗w-ideal of D.
If M �= M∗, then M∗ = D (cf. Corollary 2.6). Since D is a ∗-H-domain, there exists
a J ∈ GV ∗(D) such that J ⊆ M . Hence by Lemma 2.4, D = J∗w

⊆ M∗w
= M ,

which is absurd. Thus M = M∗ is a ∗-ideal.
(⇐) Assume that every maximal ∗w-ideal of D is a ∗-ideal and let I be an

ideal of D such that I∗ = D. If I is contained in a maximal ∗w-ideal M , then
D = I∗ ⊆ M∗ = M , which is impossible. So no maximal ∗w-ideals contain I, and
hence I∗w

= D. Since 1 ∈ I∗w
, there exists a J ∈ GV ∗(D) such that J = J1 ⊆ I.

Thus D is a ∗-H-domain. �
Let N be a torsion-free D-module. As in the integral domain case, we can define

a star-operation ∗w on N to be the set N∗w
= {x ∈ ND−{0} | Jx ⊆ N for some

J ∈ GV ∗(D)} [AC, Section 4]. Note that for ∗ = v, we have Nvw = Nw, the
w-envelope of N [FM1, Definition 3]. In [AC, Theorem 4.3], Anderson and Cook
showed that (N∗w

)M = NM for each M ∈ ∗w-Max(D). The next proposition
extends their result to any prime ∗w-ideal of D.

Proposition 2.10. Let N be a torsion-free D-module. Then NP=(N∗w
)P for any

prime ∗w-ideal P of D.

Proof. By Lemma 2.1(1), we have NP ⊆ (N∗w
)P . For the reverse, it suffices to

show that N∗w
⊆ NP . Let d ∈ N∗w

. Then there exists a J ∈ GV ∗(D) such that
Jd ⊆ N . Note that J∗w

= D by Lemma 2.4. If J ⊆ P , then D = J∗w
⊆ P∗w

= P ,
which yields a contradiction. This means that J � P . Therefore d ∈ NP , and
hence N∗w

⊆ NP . Thus (N∗w
)P = NP . �

The next two corollaries are immediate consequences of Proposition 2.10. The
proofs are easy, so we omit them.

Corollary 2.11 ([AC, Theorem 4.3]). Let N be a torsion-free D-module. Then
N∗w

=
⋂

M∈∗w-Max(D)NM . In particular, D =
⋂

M∈∗w-Max(D)DM .

Corollary 2.12. The following statements are equivalent for the torsion-free D-
modules A and B.

(1) A∗w
= B∗w

.
(2) AP = BP for any prime ∗w-ideal P of D.
(3) AM = BM for any maximal ∗w-ideal M of D.

By Proposition 2.10, if N is of ∗w-finite type, then NP is a finitely generated
DP -module for any prime ∗w-ideal P of D. Thus we recover

Corollary 2.13 (cf. [A1, Corollaries 4.2 and 4.3]). If D is a ∗w-Noetherian domain,
then DM is a Noetherian domain for each M ∈ ∗w-Max(D).

Recall that D is said to be of ∗w-finite character if each nonzero nonunit of D is
contained in only a finite number of maximal ∗w-ideals of D, i.e., if the intersection
D =

⋂
M∈∗w-Max(D)DM has finite character. Let D be a ∗w-Noetherian domain

with ∗w-dim(D) = 1. ThenD is an SM-domain, and henceD is of w-finite character
[FM2, Theorem 1.9]. Since ∗w-dim(D) = 1, it is easy to see that ∗w-Max(D) = w-
Max(D). Thus D has ∗w-finite character. However, if D is a ∗w-Noetherian domain
with ∗w-dim(D) ≥ 2, then D need not be of ∗w-finite character (see Example 3.7).
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Corollary 2.14. If D is a one-dimensional ∗w-Noetherian domain, then D is
Noetherian.

Proof. Note that ∗w-Max(D) =Max(D) since dim(D) = 1. Thus the result is an
immediate consequence of Corollary 2.13 and [K, Section 2.3, Exercise 10]. �

When ∗ = v, Corollary 2.14 recovers [FM2, Corollary 1.10].

Corollary 2.15 ([FM2, Corollary 1.10]). If D is a one-dimensional SM-domain,
then D is Noetherian.

The generalized principal ideal theorem (GPIT) states that in a Noetherian
domain D, if P is a prime ideal of D minimal over an n-generated ideal, then
ht(P ) ≤ n [K, Theorem 152]. (Recall that when n = 1, this theorem is well known
as Krull’s principal ideal theorem (PIT) [K, Theorem 142].) This was generalized
to SM-domains by Fanggui and McCasland [FM2, Corollary 1.12]. They proved
that in an SM-domain D, a prime ideal of D minimal over a w-ideal (a1, . . . , an)w
has height at most n. (Note that the PIT does not carry over to Mori domains
([BAD, Remark 3.6(c)] and [K, Section 3.2, Exercise 8]).) By Anderson and Cook,
it was shown that ∗w-Noetherian domains also satisfy the GPIT [AC, Corollary 3.7].
By Corollary 2.13, we can revisit the same results as corollaries. Before proving
Corollary 2.17, we review the following lemma.

Lemma 2.16 ([C, Corollary 2.7(2)]). Each ∗w-ideal of a ∗w-Noetherian domain D
has a finite number of minimal prime ideals.

Corollary 2.17. Let D be a ∗w-Noetherian domain.

(1) (PIT for ∗w-Noetherian domains) Let a be a nonzero nonunit element of
D. If P is a prime ideal of D minimal over (a), then ht(P ) ≤ 1.

(2) (GPIT for ∗w-Noetherian domains) Let I = (a1, . . . , an)∗w
be a ∗w-finite

ideal of D. If P is a prime ideal of D minimal over I, then ht(P ) ≤ n.
(3) Assume that P is a prime ∗w-ideal of D with ht(P ) = n. Then P is minimal

over an n-generated ideal of D.

Proof. (1) Let P be a prime ideal minimal over (a). Then P is a ∗w-ideal of D, and
hence there exists a maximal ∗w-ideal M containing P . By Corollary 2.13, DM is
a Noetherian domain, and note that PDM is a prime ideal of DM minimal over
aDM . By PIT, ht(PDM ) ≤ 1. Thus ht(P ) ≤ 1.

(2) Let P be a prime ideal minimal over I. Then P is a ∗w-ideal of D, and
hence there exists a maximal ∗w-ideal M containing P . By Corollary 2.13, DM is
a Noetherian domain, and note that PDM is a prime ideal of DM minimal over
IDM . Thus ht(P ) =ht(PDM ) ≤ n by GPIT.

(3) Let (0) � P1 � · · · � Pn = P be a chain of prime ideals of D. If Pi �= (Pi)∗w

for some 1 ≤ i ≤ n − 1, then (Pi)∗w
= D by Corollary 2.6. So D = (Pi)∗w

⊆ P ,
which is a contradiction. Hence each Pi is also a ∗w-ideal. Let 0 �= a1 ∈ P1.
By Lemma 2.16, there exist finitely many prime ideals minimal over (a1), say
Q1, . . . , Qm. If n = 1, then the statement follows from (1). Suppose that n ≥ 2
and set Q =

⋃m
i=1 Qi. Then P2 � Q [K, Theorem 83]. Let a2 ∈ P2 −Q. Then P2

is minimal over (a1, a2), and hence ht(P2) ≤ 2 by (2). Since P2 contains the chain
(0) � P1, ht(P2) ≥ 2. Therefore ht(P2) = 2. Repeating this process, we can choose
some suitable elements a1, . . . , an ∈ P so that P is minimal over (a1, . . . , an). �
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3. Main results

Let ∗ be a star-operation on D[X]. Then ∗ induces a star-operation ∗ on D
defined by I �→ I[X]∗ ∩K for each I ∈ F(D) [M2, Proposition 2.1]. From now on,
we refer to this induced star-operation as ∗. Note that if ∗ is of finite type, then so
is ∗.

Lemma 3.1. Let ∗ be a star-operation on D[X]. If J ∈ GV ∗(D), then J [X] ∈
GV ∗(D[X]).

Proof. Since J ∈ GV ∗(D), J∗ = D. Hence (J [X])∗ = (J∗[X])∗ = D[X], where the
first equality follows from [M2, Proposition 2.1]. Since J is finitely generated in D,
so is J [X] in D[X]. Thus J [X] ∈ GV ∗(D[X]). �

It is well known as the Hilbert basis theorem that if D is a Noetherian domain,
then the polynomial ring D[X] is also a Noetherian domain [K, Theorem 69] (or
[AM, Theorem 7.5]). This was generalized to SM-domains, and the statement is
that if D is an SM-domain, then so is D[X] [FM2, Theorem 1.13]. Note that if
∗ is the v-operation on D[X], then ∗ is the v-operation on D [M2, Remark 2.2];
so ∗w (resp., ∗w) is exactly the same as the w-operation on D[X] (resp., D) [HH,
Proposition 4.3]. Thus the next theorem is a generalization of the Hilbert basis
theorem for SM-domains.

Theorem 3.2 (The Hilbert basis theorem for ∗w-Noetherian domains). Let ∗ be
a star-operation on D[X]. If D is a ∗w-Noetherian domain, then D[X] is a ∗w-
Noetherian domain.

Proof. Let H be a ∗w-ideal of D[X] and let Ir be the set of leading coefficients of
all polynomials of degree r in H, where r runs over all nonnegative integers. Then
it is easy to see that {Ir}r≥0 is an ascending chain of ideals of D. Since D is a ∗w-
Noetherian domain, there exists a nonnegative integerm such that (In)∗w

= (Im)∗w

for all n ≥ m. Also, since D is ∗w-Noetherian, for each 0 ≤ r ≤ m, Ir is of ∗w-finite
type; so we can write (Ir)∗w = (ar1, . . . , arnr

)∗w , where ar1, . . . , arnr
∈ Ir. Then

there exists a polynomial fri ∈ H whose leading coefficient is ari.

Claim. H = ({fri | 0 ≤ r ≤ m and 1 ≤ i ≤ nr})∗w
. The containment ({fri |

0 ≤ r ≤ m and 1 ≤ i ≤ nr})∗w
⊆ H is trivial. For the converse, let f ∈ H. If

f = 0, then there is nothing to prove. Assume that f �= 0. We use the induction
on the degree of f . It is clear when f is a constant. Suppose that this theorem is
true for the degree of f less than l. Let f be a polynomial of degree l with leading
coefficient a. Assume that l ≥ m. Then a ∈ (Il)∗w

= (Im)∗w
, and hence there

exists an element B = (b1, . . . , bk) ∈ GV ∗(D) such that Ba ⊆ (am1, . . . , amnm
).

So, for each 1 ≤ i ≤ k, we can write bia =
∑nm

j=1 cijamj , where cij ∈ D. Set

gi = bif −
∑nm

j=1 cijX
l−mfmj for each 1 ≤ i ≤ k. Then the degree of gi is less than

l. If l < m, then a ∈ (Il)∗w , and hence we can construct polynomials gi whose
degrees are less than l by using the similar argument above. In both cases, by the
induction hypothesis, gi ∈ ({fri | 0 ≤ r ≤ m and 1 ≤ i ≤ nr})∗w

. Hence for each
1 ≤ i ≤ k, we can find a Ji ∈ GV ∗(D[X]) such that Jigi ⊆ ({fri | 0 ≤ r ≤ m
and 1 ≤ i ≤ nr}). Set J = J1 · · ·Jt. Then BJf ⊆ ({fri | 0 ≤ r ≤ m and
1 ≤ i ≤ nr}), which implies that B[X]Jf ⊆ ({fri | 0 ≤ r ≤ m and 1 ≤ i ≤ nr}).
By Lemma 3.1, B[X] ∈ GV ∗(D[X]) and by Lemma 2.3(3), B[X]J ∈ GV ∗(D[X]).



1206 C.J. HWANG AND J.W. LIM

Therefore f ∈ ({fri | 0 ≤ r ≤ m and 1 ≤ i ≤ nr})∗w
, i.e., H ⊆ ({fri | 0 ≤ r ≤ m

and 1 ≤ i ≤ nr})∗w
. Hence the claim is proved.

Since each ∗w-ideal of D[X] is of finite type, we conclude that D[X] is a ∗w-
Noetherian domain. �

Lemma 3.3. For any nonzero integral ideal I of D, I∗w
= I∗w

.

Proof. Let a ∈ I∗w
. Then a ∈ (I[X])∗w

∩K; so there exists a J ∈ GV ∗(D[X]) such
that Ja ⊆ I[X]. Let C be the ideal of D generated by coefficients of generators
of J . Then C∗ = (C[X])∗ ∩ K ⊇ J∗ ∩ K = D, and hence C∗ = D. Clearly, C
is finitely generated. Therefore C ∈ GV ∗(D). Since Ca ⊆ I, we have a ∈ I∗w .
Thus I∗w

⊆ I∗w
. Conversely, if b ∈ I∗w

, then there exists a J ∈ GV ∗(D) such that
Jb ⊆ I; so bJ [X] ⊆ I[X]. By Lemma 3.1, J [X] ∈ GV ∗(D[X]), which indicates that
b ∈ (I[X])∗w

∩K = I∗w
. Hence I∗w

⊆ I∗w
, and thus the equality holds. �

By Lemma 3.3, the concept of a ∗w-Noetherian domain is the same as that of a
∗w-Noetherian domain. Thus we have

Corollary 3.4. For a star-operation ∗ on D[X], if D is a ∗w-Noetherian domain,
then D[X] is a ∗w-Noetherian domain.

Remark 3.5. It is natural to ask whether the Hilbert basis theorem for ∗s-Noetherian
domains holds or not. However, it was already shown that the answer is negative.
When ∗ = v, Roitman proved that there exists a domain D containing a countable
field such that D is Mori but D[X] is not Mori [R2, Theorem 8.4]. For the interested
readers, we also mention that if D is an integrally closed Mori domain, then D[X]
is a Mori domain [Q, §3, Théorème 5] and that if D is a Mori domain containing
an uncountable field, then D[X] is a Mori domain [R1, Theorem 3.15].

Now, we would like to characterize ∗w-Noetherian domains. It is well known
that D is a Noetherian domain (resp., SM-domain) if and only if DM is Noetherian
for all M ∈ Max(D) (resp., M ∈ w-Max(D)) and any nonzero element of D lies
in only finitely many maximal ideals (resp., maximal w-ideals) [K, Section 2.3,
Exercise 10] (resp., [FM2, Theorem 1.9]). Motivated by these results, we study the
∗w-Noetherian domain analogue.

Theorem 3.6 (cf. Corollary 2.13). Assume that DM is a Noetherian domain for
each maximal ∗w-ideal M of D and that D is of ∗w-finite character. Then D is a
∗w-Noetherian domain.

Proof. Assume that DM is a Noetherian domain for every M ∈ ∗w-max(D) and
let I be a prime ∗w-ideal of D. Choose any nonzero element a ∈ I. Since D is
of ∗w-finite character, there exists only a finite number of maximal ∗w-ideals of
D containing a, say M1, . . . ,Mn. Since DMi

is Noetherian for each 1 ≤ i ≤ n,
IDMi

= (ai1, . . . , aimi
)DMi

for some ai1, . . . , aimi
∈ I. Let C be the ideal of D

generated by a and all aij . Then C is a finitely generated ideal of D which is
contained in I. Hence CDMi

= IDMi
for each 1 ≤ i ≤ n. Let M ′ be a maximal

∗w-ideal such that M ′ �= Mi for all 1 ≤ i ≤ n. Then we have a �∈ M ′, and hence
CDM ′ = DM ′ = IDM ′ . Thus CDM = IDM for all M ∈ ∗w-max(D). It follows
from Corollary 2.12 that I = C∗w

. This means that every prime ∗w-ideal of D is
of finite type. Thus D is a ∗w-Noetherian domain by Lemma 2.1(2). �
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It is worth remarking at this point that Noetherian domains (resp., SM-domains)
have finite character (resp., w-finite character), and this property plays a significant
role when many mathematicians verify some famous theorems (for example, Mati-
jevic’s theorem [M1, Corollary] and the Krull-Akizuki theorem [K, Theorem 93] (or
[N, Theorem 33.2])). The next example shows that a ∗w-Noetherian domain need
not have ∗w-finite character. Therefore the converse of Theorem 3.6 is not true in
general.

Example 3.7. This example is due to [C, Example 4.5]. Let K be a field, X =
{Xi | i ∈ N} be a set of indeterminates over K, D = K[X], and Pn be the set of
prime ideals P of D with ht(P ) = n. For each n ≥ 1, let ∗n be the star-operation on
D defined by I∗n

=
⋂

P∈Pn
IDP for all I ∈ F(D). Then D is a (∗n)w-Noetherian

domain with (∗n)w-dim(D) = n. We also note that (∗n)w-Max(D) = Pn. Fix
n ≥ 2. For each i ≥ n, set Pi = (X1, . . . , Xn−1, Xi). Then ht(Pi) = n, and
hence Pi is a maximal (∗n)w-ideal of D containing X1, i.e., X1 belongs to infinitely
many maximal (∗n)w-ideals (X1, . . . , Xn−1, Xi) of D, where i ≥ n. Thus if (∗n)w-
dim(D) ≥ 2, then D does not have (∗n)w-finite character.

It was shown that D is an SM-domain with w-dim(D) = 1 if and only if for
every nonzero w-ideal I of D, every descending chain of w-ideals of D containing
I is stationary [FM2, Theorem 3.2]. We extend this result to the ∗w-Noetherian
domain.

Theorem 3.8. The following assertions are equivalent.

(1) D is a ∗w-Noetherian domain with ∗w-dim(D) = 1.
(2) For any nonzero ∗w-ideal I of D, every descending chain of ∗w-ideals of D

containing I stabilizes.

Proof. As mentioned before Corollary 2.14, we note again that a ∗w-Noetherian
domain with ∗w-dim(D) = 1 has ∗w-finite character.

(1)⇒ (2) Let {In}n∈N be a descending chain of ∗w-ideals ofD containing I. Since
D is a ∗w-Noetherian domain with ∗w-dim(D) = 1, there exist only finitely many
maximal ∗w-ideals containing I, say M1, . . . ,Mn. Also, for each 1 ≤ i ≤ n, DMi

is
a Noetherian domain with dim(DMi

/IDMi
) = 0 by Corollary 2.13. Therefore for

each 1 ≤ i ≤ n, DMi
/IDMi

is an Artinian domain [AM, Theorem 8.5], and hence
we can find a positive integer mi such that IkDMi

= Imi
DMi

for all k ≥ mi. Set
m =max{m1, . . . ,mn}, and then we have IkDMi

= ImDMi
for all k ≥ m and all

1 ≤ i ≤ n. Let M ′ be a maximal ∗w-ideal such that M ′ �= Mi for all i = 1, . . . , n.
Since I � M ′, we have IkDM ′ = DM ′ = ImDM ′ for every k ≥ 1. By Corollary 2.12,
Ik = Im for all k ≥ m. Thus the chain {In}n∈N is stationary.

(2)⇒ (1) First, we show thatD is a ∗w-Noetherian domain. LetM be a maximal
∗w-ideal of D and I be a ∗w-ideal of D contained in M .

Claim 1. DM/IDM is an Artinian domain. Let {Jn}n∈N be a descending chain
of ideals of DM which contain IDM and set In = Jn ∩ D for each n ≥ 1. Then
{(In)∗w

}n∈N is a descending chain of ∗w-ideals of D containing I. By (2), this chain
stabilizes, and hence there exists a positive integer m such that (In)∗w

= (Im)∗w

for all n ≥ m. By Proposition 2.10, Jn = InDM = (In)∗w
DM = (Im)∗w

DM =
ImDM = Jm for all n ≥ m. Therefore the descending chain {Jn}n∈N stabilizes, and
hence DM/IDM is an Artinian domain.
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Claim 2. DM is a Noetherian domain. Let {Cn}n∈N be an ascending chain of
nonzero ideals of DM . Set I = C1 ∩ D. Then I is a nonzero ideal of D and by
Proposition 2.10, I∗w

DM = IDM = C1. It follows from Claim 1 that DM/C1 is
an Artinian domain; so DM/C1 is Noetherian [AM, Theorem 8.5]. Thus DM is a
Noetherian domain [E, Lemma 4].

Let d be a nonzero nonunit element of D. If D does not have ∗w-finite character,
then there is an infinite set {Mn}n∈N of maximal ∗w-ideals of D containing d; so
{Qn =

⋂n
i=1 Mi}n∈N is a descending chain of ∗w-ideals of D containing (d). By

(2), there exists an m ≥ 1 such that Qm = Qm+1. Since each Mn is a maximal
∗w-ideal of D, Mm+1 = Mi for some 1 ≤ i ≤ m. This is a contradiction. Therefore
d belongs to only a finite number of maximal ∗w-ideals of D. Thus Theorem 3.6
indicates that D is a ∗w-Noetherian domain.

Next, we show that ∗w-dim(D) = 1. Let M be a maximal ∗w-ideal of D and
choose any nonzero element a ∈ M . By Claim 1, DM/aDM is Artinian, whence
dim(DM/aDM )=0 [AM, Theorem 8.5]. Therefore MDM is the only minimal prime
ideal over aDM , and hence ht(MDM ) = 1. This means that ht(M) = 1, and thus
we conclude that ∗w-dim(D) = 1. �

Corollary 3.9. Let D be a ∗w-Noetherian domain with ∗w-dim(D) = 1 and let
I be a nonzero ∗w-ideal of D. Then DM/IDM is an Artinian domain for each
maximal ∗w-ideal M which contains I.

Proof. The proof comes from (1) ⇒ (2) in Theorem 3.8. �

In [C, Section 3], the ∗-global transform of D is defined to be the set D∗g =
{x ∈ K | M1 · · ·Mnx ⊆ D for some Mi ∈ ∗s-Max(D)}. Then D∗g is an overring of
D and D∗g = D∗sg = D∗wg, so the concept of ∗w-global transform coincides with
that of ∗-global transform. We are closing this article with a simple result about
the ∗w-global transform of D.

Proposition 3.10. If D is a ∗w-Noetherian domain with ∗w-dim(D) = 1, then
D∗wg = K.

Proof. By the definition of D∗wg, it is clear that D∗wg ⊆ K, and so it remains
to show that K ⊆ D∗wg. Let x ∈ K. If x ∈ D, then there is nothing to prove.
Assume that x �∈ D and set I = {y ∈ D | xy ∈ D}. Note that I �= D because
x �∈ D, and hence I is a ∗w-ideal of D. Since D has ∗w-finite character, there are
only a finite number of maximal ∗w-ideals containing I, say M1, . . . ,Mn. Since
D is a ∗w-Noetherian domain, for each 1 ≤ i ≤ n, we can find a finitely gener-
ated ideal Ji ⊆ Mi of D such that Mi = (Ji)∗w

. Then J1 · · · Jn ⊆ M1 · · ·Mn ⊆
⋂n

i=1 Mi =
√
I, where the equality holds because ∗w-dim(D) = 1. It is obvious that

J1 · · ·Jn is finitely generated, and hence there exists a positive integer m such that
(J1 · · · Jn)m ⊆ I. Therefore ((M1 · · ·Mn)

m)∗w
= ((J1 · · ·Jn)m)∗w

⊆ I∗w
= I. Thus

we conclude from the definition of I that x ∈ D∗wg. �
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