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A STRICT POSITIVSTELLENSATZ FOR RINGS

OF DEFINABLE ANALYTIC FUNCTIONS

ANDREAS FISCHER

(Communicated by Julia Knight)

Abstract. Consider an expansion of the real field in which every unary defin-
able continuous function can be ultimately majorized by a definable analytic
function. We prove the strict Positivstellensatz for analytic functions which
are definable in such structures. The methods also work for a large class of

quasianalytic subrings of the ring of those smooth functions that are definable
in a polynomially bounded structure.

1. Introduction

Let k be any nonnegative integer. Krivine’s result (cf. [9]), often referred to as
Stengle’s Positivstellensatz (cf. [15]), characterizes the polynomials nonnegative on
the basic closed semialgebraic set

F := {f1 ≥ 0, . . . , fk ≥ 0}
as follows:

A polynomial g is nonnegative on F if and only if there are polynomials p1, p2 in
the positive cone C generated by the polynomials fi and the sums of squares such
that

p1g = p2 + g2m

for some m ≥ 0. The polynomial is strictly positive on F if and only if there is an
equation

p1g = 1 + p2,

where p1, p2 ∈ C; see for example [5, Cor. 4.2.10].
Schmüdgen proved in [13] that if F is compact and g strictly positive on F ,

then p1 is not needed, and Putinar verified additional conditions on the fi for g
belonging to the quadratic module generated by the fi.

In [1], Acquistapace, Andradas and Broglia proved the strict Positivstellensatz
for (global) analytic functions on Euclidean spaces.

Here we generalize and strengthen the result in [1] by providing a proof which,
among other things, also preserves definability.
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Let R denote an expansion of the real field (see [4, 6, 7] for introductions to
structures over the real field). By definable, we always mean definable in R with
parameters from R, and functions are definable if their graphs are definable.

We consider structures R which satisfy the following condition:

(A) For every definable continuous function φ : [0,∞) → R there is a definable
analytic function Φ : [−1,∞) → R such that Φ ≥ φ on [0,∞).

This property is not very restrictive. No structure failing this property is known to
the author; in particular, every known o-minimal expansion of the real field satisfies
this property. Moreover, the structure in which all subsets of Euclidean spaces are
definable satisfies this property.

For a finite set of functions f1, . . . , fk : Rn → R, we let

F :=

k⋂
i=1

{fi ≥ 0}.

We shall prove the following theorem.

Theorem 1.1. Assume that R satisfies property (A). Let g, f1, . . . , fk : Rn → R

be definable and analytic such that g > 0 on F . Then there are definable analytic
functions v0, . . . , vk ∈ Cω(Rn, (0,∞)) such that

g = v20 +

k∑
i=1

v2i fi.

Denote by C∞
def (R

n,R) the definable smooth functions from R
n to R. Suppose

now that R is additionally polynomially bounded; that is, every definable contin-
uous function φ : [0,∞) → R is bounded by some polynomial. Then the ring
C∞
def (R

n,R) is quasianalytic; i.e., the Taylor homomorphism

T : C∞
def (R

n,R) → R[[X1, . . . , Xn]]

mapping f to its Taylor series at 0 is injective (cf. [10]).
In particular, every subring of C∞

def (R
n,R) is quasianalytic. However, smooth

and analytic do not always coincide in polynomially bounded o-minimal structures;
see [12]. For a certain class of such quasianalytic rings, we also have the strict
Positivstellensatz. This Positivstellensatz can be formulated in a more general
form as follows.

Theorem 1.2. Let R be a polynomially bounded o-minimal expansion of the real
field. Suppose B is a subring of C∞

def (R
n,R) such that

(a) R[X1, . . . , Xn] ⊂ B;
(b) if f ∈ B, and f > 0, then 1/f and

√
f belong to B.

Let g, f1, . . . , fk ∈ B such that g > 0 on F . Then there are strictly positive functions
v0, . . . , vk ∈ B such that

g = v20 +

k∑
i=1

v2i fi.

The ring Cω
def (R

n,R) is an example of such a ring B.

Remark 1.3. If one considers differentiable or smooth functions when the expo-
nential function is definable, then one obtains a far stronger Positivstellensatz; see
[2, 8].
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The proofs in [1] essentially use the fairly transcendental tool of analytic approx-
imation of continuous functions with respect to the (strong) Whitney topology. So
far, definable analytic approximation is only known for the semialgebraic structure;
cf. [14]. By giving a rather explicit construction of the functions v0, . . . , vk of the
above theorems we avoid approximation while preserving definability. Section 2
is devoted to the construction of these functions to prove both Theorem 1.1 and
Theorem 1.2. In the final section, Section 3, we briefly discuss some generalizations
and a consequence of our theorems.

2. Proofs

2.1. Two lemmas. We use ‖·‖ to denote the Euclidean norm, and |·| to denote
the absolute value. We start by proving two elementary lemmas.

Lemma 2.1. Let ε : Rn → (0,∞) be definable and continuous.

(a) If R satisfies (A), then there is a definable Cω function ρ : Rn → (0, 1) such
that ρ < ε on R

n.
(b) If R is polynomially bounded, then there is a strictly positive function ρ ∈ B

such that ρ < ε on R
n.

Proof. For t ≥ 0 let

L(t) := sup

{
1

ε(x)
: ‖x‖ ≤

√
t

}
.

To prove (a), we notice that by (A) there is a definable function Φ : [−1,∞) → R

with Φ(t) > L(t). Define ρ by

ρ = 1/(1 + Φ(‖x‖2)).
To prove (b), we observe that the polynomial boundedness of R implies that there
is a polynomial p such that p(t) > L(t). Set ρ := 1/(1 + p(‖x‖2)). �

Lemma 2.2. Let U ⊂ R
n be a definable open set, and let B ⊂ U be a definable

closed set. Let ε : U → (0,∞) be a definable continuous function. Then there exists
a definable continuous function ε̃ : Rn → (0,∞) such that ε̃ = ε on B.

Proof. The case B = ∅ is trivial, so we may assume that B �= ∅. We may also
assume that U �= R

n; otherwise one can take ε̃ = ε. Let

V = {x ∈ R
n : dist(x,B) ≥ dist(x,Rn \ U)}.

Let φ1(x) = dist(x,B), and let φ2(x) = dist(x, V ). Then

ε̃ :=
φ1 + εφ2

φ1 + φ2

satisfies the required properties. �

2.2. Reduction step. The proofs of Theorem 1.1 and Theorem 1.2 are similar.
So if R is an expansion of R which is not polynomially bounded but satisfies (A),
we let A := Cω

def (R
n,R), and if R is a polynomially bounded expansion of the real

field, we let A be a subring B of C∞
def (R

n,R) satisfying the conditions (a) and (b)
of Theorem 1.2.

Moreover, the theorems are trivial if k = 0. So from now on, we assume k ≥ 1.
The following lemma is used to reduce the proof of the theorems to the case

k = 1.
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Lemma 2.3. Let g, f1, . . . , fk ∈ A and let g > 0 on F . Then there exist strictly
positive functions s1, . . . , sk ∈ A such that

h :=

k∑
i=1

s2i fi

satisfies
F ⊂ {h ≥ 0} ⊂ {g > 0}.

Proof. The case F = R
n is trivial, so we may assume that F �= R

n.
Consider the function ε : Rn \ F → R defined by

ε(x) :=

∑k
i=1 max(−fi(x), 0)

2∑k
i=1 |fi(x)|

.

This function is definable, continuous and strictly positive (particularly on {g ≤ 0}).
By Lemma 2.2, there is a definable continuous function ε̃ : Rn → (0,∞) such that
ε̃ = ε on {g ≤ 0}. By Lemma 2.1, there is a ρ ∈ A such that 0 < ρ < ε̃.

For i = 1, . . . , k, set

φi :=
1

2

(√
ρ2 + f2

i − fi

)
.

Then we have
0 < φi ≤

ρ

2
on {fi ≥ 0}

and
|fi| < φi ≤ |fi|+

ρ

2
on {fi ≤ 0}.

We notice that the functions φi are strictly positive. Hence, there are strictly
positive functions si ∈ A such that s2i = φi. Define

h :=

k∑
i=1

s2i fi.

Then F ⊂ {h ≥ 0}. Let δi be the characteristic function of the set {fi > 0}. Then
we have on {g ≤ 0} that

h =
k∑

i=1

φifi

≤
k∑

i=1

(max(−fi, 0) + δiρ/2)fi

≤
k∑

i=1

max(−fi, 0)fi +
ρ

2

k∑
i=1

|fi|

≤ −
k∑

i=1

max(−fi, 0)
2 +

1

2

k∑
i=1

max(−fi, 0)
2

=
−1

2

k∑
i=1

max(−fi, 0)
2

< 0.

Hence {h ≥ 0} ⊂ {g > 0}. �
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2.3. Proof of Theorem 1.1 and Theorem 1.2. We are now able to prove the
theorems. By convention, we set a/0 := +∞ if a ∈ (0,∞).

Proof. By Lemma 2.3 there are strictly positive functions s1, . . . , sk ∈ A such that

h =

k∑
i=1

s2i fi

satisfies

F ⊂ {h ≥ 0} ⊂ {g > 0}.
Hence

{h ≥ 0} ∩ {g ≤ 0} = ∅.
Define ε : {h ≥ 0} ∪ {g ≤ 0} → R by

ε(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min

(
1, g(x) + h(x),

g(x)√
|h(x)|

,
g(x)2

2 |h(x)(g(x) + h(x))|

)
for x ∈ {h ≥ 0},

min

(
1,

−h(x)

2
,
h(x)2

2 |g(x)|

)
for x ∈ {g ≤ 0}.

Then ε is continuous and strictly positive, and, by the same definition, it can
be extended to a continuous, strictly positive function ε′ on some open definable
neighbourhood U of {h ≥ 0} ∪ {g ≤ 0}. So ε extends to a definable, continuous,
strictly positive function on R

n by Lemma 2.2. By Lemma 2.1, there is a strictly
positive ρ ∈ A which is majorized by the extended function ε.

Define the functions σ1, σ2, τ1 and τ2 by

τ1 :=
√
ρ2 + (g + h)2,

τ2 :=
√
ρ2 + g2,

σ1 :=
1

2

(√
ρ4 + g2 + g

)
,

σ2 :=
1

2

(√
ρ4 + (g + h)2 − (g + h)

)
.

Set

w :=
σ1

τ1
+

σ2

τ2
.

This function is strictly positive and belongs to A.
We claim that the function u given by

u := g − wh

is strictly positive. This will be proved in several steps.

Step 1. Observe that on {g ≤ 0} we have

σ1

τ1
≤

1
2ρ

2√
ρ2 + (g + h)2

≤ ρ

2
,

and on {h ≥ 0} we have

σ2

τ2
≤

1
2ρ

2√
ρ2 + h2

≤ ρ

2
.
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Step 2 (a). On {h ≥ 0} we have g > 0, so

g(x)τ1(x)− h(x)σ1(x)

= g(x)
√
ρ(x)2 + (g(x) + h(x))2 − h(x)

2

(√
g(x)2 + ρ(x)4 + g(x)

)
≥ g(x)

√
ρ(x)2 + (g(x) + h(x))2 − h(x)

(
g(x) +

ρ(x)2

2

)

> g(x)(g(x) + h(x))− h(x)g(x)− 1

2
h(x)min

(
1,

g(x)2

|h(x)|

)

≥ g(x)2

2
.

Hence, the function ε1 : {h ≥ 0} → R defined by

ε1 :=
gτ1 − hσ1

τ1
>

g2

2
√
ρ2 + (g + h)2

≥ g2

2
√
2(g + h)

is strictly positive.

Step 2 (b). On {g ≤ 0} we have h < 0, so

gτ2 − hσ2 = g
√
ρ2 + h2 − h

1

2

(√
(g + h)2 + ρ4 − (g + h)

)
> g

√
ρ2 + h2 − h(−(g + h))

> −gh+ ρg + hg + h2

≥ h2

2
.

Hence, the function ε2 : {g ≤ 0} → R defined by

ε2 :=
τ2g − σ2h

τ2
>

h2

2
√
ρ2 + h2

is strictly positive.

Step 3. Verifying u > 0.

On {h ≥ 0} we have

u(x) = g(x)− σ1(x)

τ1(x)
h(x)− σ2(x)

τ2(x)
h(x)

≥ ε1(x)−
ρ(x)

2
h(x)

≥ g(x)2

2
√
2(h(x) + g(x))

− 1

2
min

(
1,

g(x)2

2 |h(x)(g(x) + h(x))|

)
h(x)

≥
(

1

2
√
2
− 1

4

)
g(x)2

h(x) + g(x)
> 0.

On {g ≤ 0} we have

u = g − σ1

τ1
h− σ2

τ2
h = ε2 −

σ1

τ1
h > 0,

since h < 0 on {g ≤ 0}.
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On {g > 0} ∩ {h < 0} we evidently have u = g − wh > 0.

Finishing the proof of the theorems, we set v0 =
√
u and vi =

√
wsi and obtain

the equality

g = u+ wh = v20 +
√
w

2
k∑

i=1

s2i fi = v20 +

k∑
i=1

v2i fi.

�

3. Remarks and consequences

Remark 3.1. Theorem 1.2 remains true if we replace R by any real closed field R,
and R by any polynomially bounded definably complete expansion of R; cf. [11].

Remark 3.2. The proofs do not make use of the quasianalyticity of the considered
rings. They actually work for more general rings, as long as a corresponding state-
ment of Lemma 2.1 holds true. Lemma 2.2 works (in an appropriate formulation)
for continuous functions on a Banach space.

Remark 3.3. Let d ∈ N. Suppose one stipulates that the ringA additionally satisfies
the following property: If f ∈ A and f > 0, then f1/(2d) ∈ A. Then one can write

g = v2d0 +
k∑

i=1

v2di fi

in the statement of Theorem 1.2. For Theorem 1.1, this property is evidently
satisfied.

Let Specr(A) denote the real spectrum of A; see [3, Chap. 7]. Then R
n embeds

canonically into Specr(A) by mapping x to the prime cone x̃ consisting of all f ∈ A
such that f(x) ≥ 0.

The following corollary is a particular case of the Artin-Lang property.

Corollary 3.4. Let f1, . . . , fk ∈ A. Then

S̃ = {α ∈ Specr(A); f1(α) ≥ 0, . . . , fk(α) ≥ 0}
is not empty if and only if S = R

n ∩ S̃ is not empty.

Proof. Evidently, if S̃ = ∅, then S = ∅. Suppose now that

S = S̃ ∩ R
n = {x ∈ R

n : f1(x) ≥ 0, . . . , fk(x) ≥ 0} = ∅.
Then −fk is strictly positive on the set

F = {x ∈ R
n : f1, (x) ≥ 0, . . . , fk−1(x) ≥ 0}.

By Theorem 1.2 and Theorem 1.1, there are strictly positive functions v0, . . . , vk−1 ∈
A such that

−fk = v20 +

k−1∑
i=1

v2i fi.

Set ti = vi/v0 for i = 1, . . . , k − 1 and tk = 1/v0. Then

0 = 1 +

k∑
i=1

t2i fi.
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Assume, for a contradiction, that there exists a β ∈ S̃. Then fi(β) ≥ 0 and
t2i (β) ≥ 0 for all i. Hence, we obtain the contradiction

0 = 1 +

k∑
i=1

t2i (β)fi(β) ≥ 1.

So S̃ is empty. �
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