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SIGNED SUMS OF TERMS OF A SEQUENCE
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(Communicated by Matthew A. Papanikolas)

Abstract. We give a sufficient and necessary condition on the sequence {an}
of integers that for any integer l ≥ 1, every integer can be represented in the
form εlal + εl+1al+1 + · · ·+ εkak, where εi ∈ {−1, 1} (i = l, l+1, . . . , k). This
generalizes the known result on integral-valued polynomial values. Moreover,
we show that such sequences exist with any growth rate. This answers two
problems posed by Bleicher. We also pose several problems for further research.

1. Introduction

In [1], Bleicher proved the following interesting result: for any given integer
k ≥ 2, every integer can be represented in the form

n = ε11
k + ε22

k + · · ·+ εtt
k, εi ∈ {−1, 1}, i = 1, 2, . . . , t.

Yu [11] generalized the result to integral-valued polynomials with fixed divisor equal
to 1. Boulanger and Chabert [2] considered the problem in the ring of algebraic
integers OK of a cyclotomic field K. For related research, one may refer to [3], [4],
[5], [7], [8] and [9]. Starting from the result on kth powers, Bleicher [1] posed the
following two problems.

Problem 1. Does there exist a constant c > 1 and an increasing sequence of
integers {ai} with ai > ci for every positive integer i such that for every positive
integer n, there is a positive integer m and a choice of εi = ±1 for which n =∑m

i=1 εiai?

Problem 2. On the assumption that Problem 1 is answered affirmatively, is there
an upper bound for possible choices of c?

For sequences, Erdős and Surányi [6] proved the following result: Let 0 < a1 <
a2 < · · · be a sequence of integers. If (a) the sequence contains infinitely many
odd numbers; (b) for some m, all positive integers > m can be represented as
the sum of different elements of the sequence; (c) an+1 < 2an − m for n ≥ n0,
then every integer can be represented in the form ε1a1 + ε2a2 + · · · + εtat, where
εi ∈ {−1, 1}(i = 1, 2, . . . , t).

In this note we prove the following result. This generalizes the result on integral-
valued polynomials (Bleicher [1], Yu [11]). Moreover, we answer Problem 1 affir-
matively and Problem 2 negatively.
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Theorem 1. Let a1, a2, . . . be a sequence of integers. Then for any integers l ≥ 1
and n, there exists an integer t ≥ l and a choice of εi = ±1 such that

n = εlal + εl+1al+1 + · · ·+ εtat

if and only if the following two conditions hold:
(i) there exists a nonzero integer M such that for any l ≥ 1 there exists an

integer r = rl ≥ l and εi ∈ {−1, 1}(l ≤ i ≤ r) with M = εlal + · · ·+ εrar;
(ii) for any l ≥ 1 we have gcd(al, al+1, . . .) = 1.

Remark. For any l ≥ 1, letting r = rl and s = rr+1, we have

0 = M −M = εlal + · · ·+ εrar − εr+1ar+1 − · · · − εsas.

So, for a fixed l ≥ 1 and a fixed integer n, the t in Theorem 1 can take infinitely
many values.

Remark. Let a1 = 2, a2 = 3 and ai+2 = ai+1 + ai + 1 (i = 1, 2, . . .). Since 1 =
−ai − ai+1 + ai+2, (i) is true for M = 1 and (ii) is true by (ai, ai+1, ai+2) = 1 for

all i ≥ 1. This verifies Theorem 1. One may easily prove that ai > (
√
2)i for all

i ≥ 1. Thus Problem 1 is answered affirmatively.

Remark. For an integral-valued polynomial f(x) of degree h with fixed divisor
equal to 1, let ai = f(i)(i = 1, 2, . . .). For any integers l and n, by the Lagrange
interpolation formula we know that f(n) is a combination of f(l), f(l + 1), . . . ,
f(l + h) with integral coefficients. Since f(x) has no fixed factors, we have

gcd(f(l), f(l+ 1), . . . , f(l + h)) = 1.

On the other hand, let f1(x) = f(x + 1) − f(x), fi+1(x) = fi(x + 2i) − fi(x)(i =
1, 2, . . .). Then fi(x) is a polynomial of degree h − i (1 ≤ i ≤ h). So fh(x) is a
nonzero constant. We also have

fh(x) =

2h−1∑

i=0

εif(x+ i), εi ∈ {−1, 1}.

Since f(x) is integral-valued, fh(x) = fh(0) is an integer. For related information,
one may refer to [10]. By Theorem 1, for any l ≥ 1, there exists t ≥ l such that
every integer can be represented in the form n = εlf(l)+εl+1f(l+1)+ · · ·+εtf(t),
where εi ∈ {−1, 1}(i = l, l + 1, . . . , t). That is the main result in [11].

For Problems 1 and 2, we have the following general result. This means that
sequences exist with any growth rate.

Theorem 2. For any sequence 1 < c1 < c2 < · · · , there exists a sequence 1 <
a1 < a2 < · · · of integers with ai > ci for every positive integer i such that for any
integers l ≥ 1 and n, there are infinitely many positive integers m ≥ l for which
there is a choice of εi = ±1 with n =

∑m
i=l εiai.

Remark. For any given C > 1, let ci = Ci. Problems 1 and 2 immediately follow
from Theorem 2.

In the proof of Theorem 2, some consecutive terms are “near”. If we require that
consecutive terms are not “near”, i.e. ak+1 ≥ αak for all k ≥ 1, what is the largest
possible value of α? We have the following precise result.



SIGNED SUMS OF TERMS OF A SEQUENCE 1107

Theorem 3. (i) If {ai} is a sequence of positive integers such that, for some integer
n0 and infinitely many positive integers l, there is an integer m > l and a choice of
εi = ±1 with

m∑

i=l

εiai = n0,

then there are infinitely many positive integers k such that ak+1 ≤ 2ak − 1.
(ii) Let a1 be any positive integer, and define the sequence {ai} by ak+1 = 2ak−1

for all k ≥ 1. Then for any integers l ≥ 1 and n, there are infinitely many positive
integers m > l for which there is a choice of εi = ±1 with

n =
m∑

i=l

εiai.

Now we consider only representations of the form

n =

m∑

i=1

εiai.

For this purpose we introduce the following definition.

Definition 1. Let M be a positive integer. The subsequence {al, al+1, . . . , ak}(k ≥
l) is said to be M−coprime if gcd(M,al, al+1, . . . , ak) = 1.

The condition (ii) in Theorem 1 implies that there are infinitely many disjoint
M−coprime subsequences.

Theorem 4. Let a1, a2, . . . be a sequence of integers satisfying
(i) there exists a positive integer M such that for any l ≥ 1 there exists an integer

r = rl ≥ l and εi ∈ {−1, 1}(l ≤ i ≤ r) with

M = εlal + · · ·+ εrar;

(ii) there are at least M disjoint M−coprime subsequences of {a1, a2, . . .}.
Then every integer can be represented in the form

n = ε1a1 + ε2a2 + · · ·+ εtat, εi ∈ {−1, 1}, i = 1, 2, . . . , t.

2. Proof of theorems

Proof of Theorem 1. First we assume that for any integers l ≥ 1 and n, there exists
an integer t ≥ l and a choice of εi = ±1 such that

n = εlal + εl+1al+1 + · · ·+ εtat.

We take n = 1. Then (i) holds with M = 1. (ii) follows from

gcd(al, al+1, . . . , at) = 1.

Now we assume that both (i) and (ii) hold.
For any l ≥ 1, let r = rl and s = rr+1. We have

2M = εlal + · · ·+ εrar + εr+1ar+1 + · · ·+ εsas.

So we may assume that M is a positive even number.
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Fix an integer l ≥ 1. Let

Ak = {εlal + εl+1al+1 + · · ·+ εkak : εi ∈ {−1, 1}(l ≤ i ≤ k)}, k = l, l + 1, . . .

and

Āk = {b : 0 ≤ b ≤ M − 1, b ≡ a (mod M), a ∈ Ak}, k = l, l + 1, . . . .

Let mk = |Āk|. Since the numbers in Ak have the same parity, we know that the
numbers in Āk have the same parity. Thus 1 ≤ mk ≤ M/2 for all k ≥ l. It is clear
that ml ≤ ml+1 ≤ · · · . So there exist two positive integers m and i0 > l such that
mi = m for all i ≥ i0. Let

Āi = {bi1, bi2, . . . , bim}, i ≥ i0.

By |Āi+1| = m, we have

(bi1 − ai+1) + (bi2 − ai+1) + · · ·+ (bim − ai+1)

≡ (bi1 + ai+1) + (bi2 + ai+1) + · · ·+ (bim + ai+1) (mod M).

Thus 2mai+1 ≡ 0 (mod M) for all i ≥ i0. By (ii) we have 2m ≡ 0 (mod M). Since
1 ≤ m ≤ M/2, we have m = M/2. Again, by (ii), there exists an integer j ≥ i0
such that aj+1 is odd. Hence

Āj ∪ Āj+1 = {0, 1, . . . ,M − 1}.

Thus, for any integer n, there exists k = j or j + 1, εi ∈ {−1, 1}(i = l, l+ 1, . . . , k)
and an integer u such that

n = εlal + εl+1al+1 + · · ·+ εkak + uM.

By (i) we obtain a proof of Theorem 1. �

Proof of Theorem 2. Let

a2i−1 = [c2i] + 2i+ 1, a2i = [c2i] + 2i+ 2, i = 1, 2, . . . .

Then a2i+1 > a2i > a2i−1 > [c2i] + 1 > c2i > c2i−1 for all i ≥ 1.
Let l, n be two integers with l ≥ 1. For any integer j > l + |n| we have n+ al +

· · ·+ a2j > n+ 2j > 0. Let t = n+
∑2j

i=l ai. Then

n =

2j∑

i=l

(−ai) +

j+t∑

i=j+1

(−a2i−1 + a2i).

Hence, for every integer n there are infinitely many positive integers m > l for
which there is a choice of εi = ±1 with n =

∑m
i=l εiai. This completes the proof of

Theorem 2. �

Proof of Theorem 3. (i) Suppose that {an} is a sequence of positive integers satis-
fying the condition, but ak+1 ≥ 2ak for all k ≥ k0. Then ak → +∞ as k → +∞.
Take an integer l ≥ k0 with al > |n0| for which there is an integer m > l and a
choice of εi = ±1 with

m∑

i=l

εiai = n0.
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Thus

am = εmn0 +
m−1∑

i=l

−εmεiai ≤ |n0|+
m−1∑

i=l

ai

< al +
m−1∑

i=l

ai = 2al +
m−1∑

i=l+1

ai

≤ al+1 +

m−1∑

i=l+1

ai = 2al+1 +

m−1∑

i=l+2

ai

≤ · · ·
≤ 2am−2 + am−1 ≤ 2am−1,

a contradiction with ak+1 ≥ 2ak for all k ≥ k0. This completes the proof of
Theorem 3 (i).

(ii) Let l ≥ 1 and n be two integers. For any integer t > l + |n|, let s =
n+ al + al+1 + · · ·+ at. Then by ai ≥ 1 for all i ≥ 1 we have s ≥ n+ t− l+ 1 > 0.
By ak+1 = 2ak − 1 we have

at+s = at+s−1 + at+s−1 − 1 = at+s−1 + at+s−2 + at+s−2 − 2

= · · ·
= at+s−1 + at+s−2 + · · ·+ at + at − s

= at+s−1 + at+s−2 + · · ·+ at − at−1 − at−2 − · · · − al − n.

Thus

n = −
t−1∑

i=l

ai +

t+s−1∑

i=t

ai − at+s.

This completes the proof of Theorem 3 (ii). �

Proof of Theorem 4. If M = 1, then Theorem 4 is clear. Now we assume that
M > 1. Let the notation be as in the proof of Theorem 1 (the fixed l is equal to 1
and we do not assume that M is even). Let i0 = 0 and let {aij−1+1, . . . , aij}(j =
1, 2, . . . ,M) be M disjoint M−coprime subsequences of the sequence {ai}. It is
clear that mi1 ≥ 1. If mi2 = mi1 , then, similarly to the proof of Theorem 1, we
have

2mi1aj ≡ 0 (mod M), j = i1 + 1, . . . , i2.

Since {ai1+1, . . . , ai2} is an M−coprime subsequence, we have 2mi1 ≡ 0 (mod M).
If M is odd, then mi1 = M . If M is even, then, similarly to the proof of
Theorem 1, we have mi1 = M/2. Hence, if mi1 
= M,M/2, then mi2 > mi1 .
Continuing these arguments, we have that if M is odd, then miM = M . Thus
ĀiM = {0, 1, . . . ,M − 1}. If M is even, then miM/2

= M/2 and mi ≤ M/2 for all

i. Since {aiM/2+1, . . . , ai(M/2)+1
} is an M−coprime subsequence, there exists j0 ∈

{iM/2 +1, . . . , i(M/2)+1} such that aj0 is odd. Since miM/2
≤ mj0−1 ≤ mj0 ≤ M/2,

we have mj0−1 = mj0 = M/2. Since the parities of the numbers in Āj0−1 and in
Āj0 are distinct, we have

Āj0−1 ∪ Āj0 = {0, 1, . . . ,M − 1}.
Now the following arguments are similar to those of Theorem 1. This completes
the proof of Theorem 4. �
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3. Final remarks

For a sequence A = {ai} (finite or infinite) and an integer n, let σA(n) be the
ways of representation of n = ε1a1+ε2a2+· · ·+εtat, εi ∈ {−1, 1}, i = 1, 2, . . . , t.
In the previous arguments all A satisfy σA(n) = +∞. It is natural to ask: is there a
sequence A = {ai} such that 1 ≤ σA(n) < +∞ for all integers n? Now we construct
such a sequence.

For Ak = {a1, a2, . . . , ak}, let
Δ(Ak) = {ε1a1 + ε2a2 + · · ·+ εkak : εi ∈ {−1, 1}, i = 1, 2, . . . , k}.

Let a1 = 1, a2 = 3, a3 = 4. Then Δ(A1) = {±1}, Δ(A2) = {±2,±4} and
Δ(A3) = {0,±2,±6,±8}. Suppose that we have a1, . . . , ak (k ≥ 3). Let nk be the
least positive integer which is not in Δ(A1) ∪ · · · ∪ Δ(Ak), and let ak+1 = a1 +
· · ·+ ak + nk. Then nk ∈ Δ(Ak+1) and each positive integer in Δ(Ak+1) is at least
ak+1− (a1+ · · · ak) = nk. Thus we obtain two sequences, A = {ai}∞i=1 and {ni}∞i=3,
such that 3 = n3 < n4 < · · · and for every k ≥ 3 we have σA(n) = σAk

(n) ≥ 1 for
all n < nk.

Now we have proved the following theorem.

Theorem 5. There exists a strictly increasing sequence A = {ai}∞i=1 of positive
integers such that 1 ≤ σA(n) < +∞ for all integers n.

We pose the following problems here for further research.

Problem 3. Is there any (strictly increasing) sequence A = {ai} of positive integers
such that σA(0) = 2 and σA(n) = 1 for all integers n?

Problem 4. Is there a constant c > 1 and a (strictly increasing) sequence A = {ai}
of positive integers such that 1 ≤ σA(n) ≤ c for all integers n?

If A = {1, 3, 32, . . . }, then σA(n) ∈ {0, 1} for all integers n. We pose the following
problem.

Problem 5. Is there any (strictly increasing) sequence A = {ai} of positive integers
such that σA(n) ≥ 1 for all integers n and σA(n) = 1 for infinitely many integers
n?

Added in proof. We have known that Problem 3 is negative and that Problems 4
and 5 are affirmative.

Added after posting. We find that Problem 4 is still open.
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