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ON THE X-RANK OF A CURVE X ⊂ Pn:

AN EXTREMAL CASE

E. BALLICO

(Communicated by Irena Peeva)

Abstract. Let X ⊂ Pn, n ≥ 3, be an integral and non-degenerate curve.

For any P ∈ Pn the X-rank rX(P ) of P is the minimal cardinality of a set
S ⊂ Y such that P is in the linear span of S. Landsberg and Teitler proved
that rX(P ) ≤ n for any X and any P . Here we classify the pairs (X,Q),
Q ∈ Xreg, such that all points of the tangent line TQX (except Q) have

X-rank n: X ∼= P1 and TQX has order of contact deg(X) + 2− n with X at
Q.

Fix an integral and non-degenerate variety X ⊆ Pn defined over an algebraically
closed field K such that char(K) = 0. For any P ∈ Pn the X-rank rX(P ) of P is
the minimal cardinality of a finite set S ⊂ X such that P ∈ 〈S〉, where 〈 〉 denotes
the linear span. Hence rX(P ) = 1 if and only if P ∈ X. Since X is non-degenerate,
the X-rank is defined and rX(P ) ≤ n+1 for all P ∈ Pn. If char(K) = 0, then use of
Bertini’s theorem for base point free linear systems gives rX(P ) ≤ n+ 1− dim(X)
for all P ∈ Pn ([4], 5.1). When X is a Veronese embedding νd(P

m) of a projective
space Pm, then the X-rank of a point P is called the symmetric tensor rank of
P . The study of the symmetric tensor rank is an active topic of research in which
the main motivations come from engineering and applied mathematics ([2], [4], [1],
[3] and the references therein). Inside this large area a small chapter is dedicated
to the X-rank for arbitrary X. In our opinion a good motivation for this chapter
comes from the fact that in some cases the computation of rνd(Pm)(P ) requires the
computation of rX(P ) for some curve X ⊂ νd(P

m) (see the cases of border rank
≤ 3 studied in [3]). Here we prove the following result.

Theorem 1. Let X ⊂ Pn, n ≥ 3, be an integral and non-degenerate curve and
Q ∈ Xreg. Set d := deg(X). We have rX(P ) = n for all P ∈ TQX\{Q} if and
only if X is smooth and rational, (TQ ∩X)red = {Q} and the scheme TQX ∩X has
length d+ 2− n.

In the case d = n the “if” part is a consequence of the complete description
of the function rX when X is a rational normal curve proved by G. Comas and
M. Seiguer ([2], Theorem 2, [4], 4.1).
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Example 1. Fix integers d > n ≥ 3. All pairs (X,Q) as in the statement of
Theorem 1 are constructed in the following way. Let Y ⊂ Pd be a rational normal
curve. Fix O ∈ Y . For any integer t > 0 let tO ⊂ Y denote the effective Cartier
divisor tO of Y seen as a degree t zero-dimensional subscheme of Pd and let 〈tO〉 ⊆
Pd be its linear span. We have dim(〈tO〉) = min{t − 1, d}, 〈1O〉 = {O} and
〈2O〉 = TOY . Fix a (d − n − 1)-dimensional linear subspace W of 〈(d − n + 2)O〉
such that W ∩ 〈2O〉 = ∅. Any length d zero-dimensional subscheme of Y is linearly
independent. Hence dim(〈{P1, P2} ∪ (d − n + 2)O〉) = d − n + 3 for all P1, P2 ∈
Y \ {O} such that P1 �= P2 and dim(〈{P1} ∪ (d− n+ 2)O〉) = d− n+ 2 for every
P1 ∈ Y \ {O}. Since W ⊂ 〈(d− n+ 2)O〉, we get that W intersects no secant line
of Y . Since dim(〈{2P1} ∪ (d− n + 2)O〉) = d − n + 3 for every P1 ∈ Y \ {O} and
W ∩ 〈2O〉 = ∅, we get that W intersects no tangent line of W . Hence the linear
projection �W : Pd\W → Pn induces an isomorphism of Y onto its image. Take
X := �W (Y ) and Q := �W (O). Since 〈W ∪ TOY 〉 = 〈(d+2− n)O〉, TQX has order
of contact at least d+ 2− n with X at Q.

Lemma 1. Let X ⊂ Pn, n ≥ 3, be an integral and non-degenerate curve. Set
d := deg(X). Assume the existence of Q ∈ Xreg such that the tangent line TQX
has order of contact d+ 2 − n with X at Q. Then (TQX ∩X)red = {Q}, X ∼= P1

and X is obtained by the construction given in Example 1.

Proof. Fix a general A ⊂ X such that �(A) = n− 3 and set E := 〈A ∪ TQX〉. The
generality of A gives dim(E) = n− 2. Notice that the scheme E ∩X has length at
least (d + 2 − n) + (n − 3) = d − 1. Since X is non-degenerate, Bezout’s theorem
gives X ∩ E = (TQX ∩ X) ∪ A. Hence (X ∩ E)red = {Q} ∪ A ⊂ Xreg. Hence
(TQX ∩ X)red = {Q} and the linear projection from E induces a degree 1 finite
morphism u : X → P1. Since P1 is smooth, u is an isomorphism by the Zariski
Main Theorem.

Any degree d embedding of P1 is an isomorphic linear projection of a rational
normal curve of P1. Example 1 gives all pairs (Y,O,W ) such that Y is a rational
normal curve of Pd, O ∈ Y , W is a (d− n− 1)-dimensional linear subspace of Pd,
W ∩ Y = ∅ and the linear projection �W : Pd\W → Pn induces an isomorphism
of Y onto a degree d smooth curve such that T�W (O)(�W (Y )) has order of contact

d + 2 − n with �W (Y ) at �W (O). Since X ∼= P1, we get the last assertion of the
lemma. �

Easy examples (smooth plane curves with a tangent line with order of contact
d) show that Lemma 1 is wrong in P2.

Proof of Theorem 1. First we prove the “if” part. Fix (X,Q) such that (TQ ∩
X)red = {Q} and the scheme TQX∩X has length d+2−n. Lemma 1 gives X ∼= P1

and (TQX ∩X)red = {Q}. Fix P ∈ TQX\{Q} and take S ⊂ X computing rX(P ).
Hence �(S) = rX(P ) and P ∈ 〈S〉. Set M := 〈S∪TQX〉. First assume Q ∈ S. Since
TQX = 〈{P,Q}〉, we get TQX ⊆ 〈S〉, i.e. M = 〈S〉. By assumption the scheme
X∩M has a connected component of length at least d+2−n and at least dim(M)−1
further points. Bezout’s theorem gives length(X ∩V ) ≤ d+dim(V )+1−n for any
linear subspace V � Pn. We get M = Pn, i.e. rX(P ) = n + 1, contradicting [4],
5.1. Now assume Q /∈ S. We take S′ := S ∪ {Q} in the previous reasoning and get
rX(P ) + 1 ≥ n+ 1. Hence rX(P ) = n ([4], 5.1).
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From now on we prove the “only if” part. Fix X and Q. If �((X∩TQX)red) ≥ 2,
then rX(P ) ∈ {1, 2} for all P ∈ TQX. Hence we may assume (X ∩TQX)red = {Q}.
Set m := length(X ∩ TQX).

(a) Here we assume n = 3. Since Q ∈ Xreg, (X ∩ TQX)red = {Q} and
m = length(X ∩ TQX), the linear projection from TQX induces a degree d − m
morphism φ : X → P1. Since char(K) = 0, a general fiber of φ is formed by d−m
points. If d−m ≥ 2, then we get rX(P ) = 2 for a general P ∈ TQX, a contradiction.
Hence m = d− 1. Lemma 1 gives X ∼= P1.

(b) Here we assume n > 3. Fix a general A ⊂ X such that �(A) = n− 3. Set
E := 〈A ∪ TQX〉. For general A we have dim(E) = n− 2.

Claim. We claim that E ∩X = (TQX ∩X) ∪ A as schemes.

Proof of the Claim. Let �TQX : Pn\TQX → Pn−2 denote the linear projection from
the line TQX. Since Q ∈ Xreg, (X ∩ TQX)red = {Q} and m = length(X ∩ TQX),
the linear projection �TQX induces a morphism ψ : X → Pn−2 such that deg(ψ) ·
deg(ψ(X)) = d−m. If deg(ψ) ≥ 2, then rX(P ) ≤ 2 for a general P ∈ TQX. Hence
we may assume deg(ψ) = 1. Fix a general B ⊂ ψ(X) such that �(B) = n − 3.
Set A := ψ−1(B). Since ψ is birational onto its image and B is general, we have
�(A) = n− 3. Since ψ(X) is non-degenerate, we get dim(〈B〉) = n− 4. Since B is
general in ψ(X), �(B) ≤ n − 2 and ψ(X) is non-degenerate, a general hyperplane
M of Pn−2 containing B may be considered as a general hyperplane of Pn−2. Hence
our characteristic zero assumption gives that ψ(X) ∩ H is a reduced scheme in a
linearly general position. Hence 〈B〉 ∩ X = B as schemes. Since ψ is birational
onto its image and B is general, A is general in X. Hence we get the Claim.

The Claim implies E ∩X ⊂ Xreg. Hence the Claim gives that the linear projec-
tion from E induces a morphism β : X → P1 such that deg(β) = d − m + 3 − n.
If deg(β) ≥ 2, then we get the existence of P1, P2 ∈ Xreg\({Q} ∪ A) such that
P1 �= P2 and E ∩ 〈{P1, P2}〉 �= ∅, i.e. TQX ∩ (〈A ∪ {P1, P2}〉) �= ∅. Moreover,
Q /∈ (〈A ∪ {P1, P2}〉) if we take {P1, P2} = β−1(P ′) for a general P ′ ∈ β(X), be-
cause β(Q) is just the point Q′ ∈ β(X) which is the image of the osculating plane
to X at Q by the linear projection from the line TQX. Hence deg(β) = 1, i.e.
m = d+ 1− n. Apply Lemma 1. �
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