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POLYGONAL HOMOGRAPHIC ORBITS
IN SPACES OF CONSTANT CURVATURE

PIETER TIBBOEL

(Communicated by Walter Craig)

ABSTRACT. We prove that the geometry of the 2-dimensional n-body problem
for spaces of constant curvature k # 0, n > 3, does not allow for polygonal
homographic solutions, provided that the corresponding orbits are irregular
polygons of non-constant size.

1. INTRODUCTION

By the n-body problem for spaces of constant curvature, we mean the problem
of describing the dynamics of n point particles in a space of constant curvature
k # 0. Polygonal homographic solutions are solutions to such a problem for which
the point particles describe the vertices of a polygon that retains its shape over
time.

This paper is inspired by work done by Diacu [4], but research on this type of
problem goes back as far as the 1830s when Bolyai [I] and Lobachevsky [15] inde-
pendently proposed a curved 2-body problem in hyperbolic space H3. Since then,
the problem has been studied by outstanding mathematicians such as Dirichlet,
Schering [16], [17], Killing [9], [10], [II] and Liebmann [12], [I3], [I4]. More recent
results were obtained by Carifiena, Ranada, Santander [2], Diacu [3], [4], Diacu,
Pérez-Chavela [5] and Diacu, Pérez-Chavela, Santoprete [6], [7], [8]. For a more
detailed historical overview, please see [4] or [6].

This paper is about the existence of polygonal homographic solutions. An impor-
tant reason for studying these objects is that they may give us information about
the geometry of our universe. For example, Diacu, Pérez-Chavela, and M. Santo-
prete showed in [6], [7] that homographic equilateral triangles of non-equal masses
(the so-called Lagrangian solutions) exist only in Euclidean space and that in the
curved 3-body problem the masses must be equal. Because our universe contains
bodies of non-equal masses that traverse homographic equilateral triangles, we may
assume that, at least locally, our universe is Euclidean (see [4], [6], [7]).

As regular homographic orbits for spaces of constant curvature have been well in-
vestigated (see [4], [6], [7], [8]), we will focus in this paper on irregular homographic
orbits. The most general theorem so far regarding the existence of irregular poly-
gonal homographic orbits is by Diacu, who proved in [4] for n = 3:

Theorem 1.1. Consider the curved 3-body problem, given by equations 2.1)) with
n = 3 and masses my, ma, mg > 0. These equations admit no homographic orbits
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giwen by scalene non-equilateral triangles for k < 0. For k > 0, they do not admit
such solutions either if the bodies stay away from the equator.

What we will prove in this paper is the new result:

Theorem 1.2. Consider the curved n-body problem, given by equations 21I), with
n > 3 and masses my,...,m, > 0. These equations do not allow for homographic
orbits given by irregular polygons if z is not constant, where z is the same as in

22).

Remark 1.3. Of particular interest is that our proof relies on the irregularity of the
polygons alone and does not make use of the values of the masses. This means that
the non-existence of the orbits is determined solely by the geometry of the space.

Before we can prove Theorem [I.2] we need to formulate a criterion due to Diacu
[], which will play a key role in our proof. This will be done in the next section.

2. D1acu’s CRITERION

In this section, we will formulate a criterion that gives necessary and sufficient
conditions for the existence of polygonal homographic orbits. The notation used
in this paper was introduced by Diacu in [3] and makes it possible to use a unified
formulation for both the positive and negative constant curvature case, thus greatly
simplifying calculations.

Consider the curved n-body problem of n point particles. We will denote their
masses to be mq, ma,..., my, > 0 and their positions by the vectors q;, = (z;,v:, ;) €
M2, i = 1,n, where M? = {(z,y, 2) € R?| k(2 + > + 02?) = 1} and

1 for k >0,
g =
-1 for k <O.

Furthermore, consider for 3-dimensional vectors a = (ag,ay,a.), b = (by,by,b,)
the inner product

a®b=a;b; +ayb, +ca.b..
Then, following [3], [4], [6], [7] and [8], we define the equations of motion for the
n-body problem as the dynamical system described by

n

3
Z m;|k|2 [Qj —(kq; ® qj)qi]
213
j=1,j7i [U - U(“Qi © qj) ]2

(2.1) q; = - (kq; © q;)q;, i =1,7n.

We call the solution of (ZI)) a polygonal homographic solution, or a polygonal ho-
mographic orbit, in accordance with [4], if it can be represented as

(22) q= (q.17 "'7qn)7 q; = (CITiyyi,Zi)’
xi =rcos(w+a;), y; =rsin(w+ ), 2z, =2, 1,n,

where 0 < a1 < ag < ... < @, < 27 are constants, the function z = z(t) satisfies

22 = ok~ —or?, r = r(t) is the size function and w := w(t) is the angular function.
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The main tool of our proof of Theorem is Criterion 1 as formulated in [4],
which states:

Criterion 1 (Diacu’s Criterion). Considern > 3 bodies of masses my, ma,...,my, >
0 moving on the surface Mi The necessary and sufficient conditions for a polygonal
homographic orbit as described in [2.2) to be a solution of equations [2.1]) are given
by the equations

(2.3) 01=080=..=0, and y1 = Y2 = ... = Y,
where
n n
(24) 5i = Z mglji, Vi = Z m;Viji, ai = 1,7’7/,
J=15#i J=15#i
1 S
(25) /'le = 1—37 Vji =— J -
;i (2 = cjirr?)? c;i(2—cjikr?)?

(2.6) sj; = sin (a; — a5), ¢j; =1—cos(a; —a;), 4,5 =1,n, ,i#j.

3. PROOF OoF THEOREM

With Diacu’s Criterion in place, we can now prove Theorem

Proof. For the purpose of convenience later on in the proof, we define p := xr? and
Qpt1 = a1 + 27, Furthermore, we choose ao — a1 < ayy1 — oy, oy as in (22)),
i = 1,n. This can be done by choosing a suitable z-axis and y-axis.

Assume that (2)) does allow for homographic orbits given by an irregular poly-
gon if z is not constant. Then according to Criterion 1, §; —d2 = 0 and y; — 2 = 0,
S0

(3.1) 0=01 — 0y = (ma — ma)par + »_ mj(pj1 — pja),
=3

as g1 = fi12 and

n
(32) 0= Y1 — Y2 = (m2 + ml)Z/21 + ij(yjl — ng),
7=3
as Vg1 = —UV12.
Note that, using (25) and (Z0)), v;; = %uﬁ, so (B2) can be rewritten as

S " S S
(33) 0= (mz+ ml)c—m/m +D_m (L,lﬂjl - L,zﬂjz) :
21 =3 Cj1 Cj2

Using the definition of p and [2.1), we write

1
(3-4) pii(p) = ———
¢;i(2—cjip)?
As z is not constant, p is not constant either, and we may take the kth derivative
of B4), k € NU {0}, with respect to p to obtain

k—1 C%‘Fk

=0
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Taking the kth derivatives with respect to p of 1) and B3], inserting (B.5) and
dividing everything by ( o (B4 l)) then gives

C%"'k n C_%1+k c.%;rk
(36) 0= (m1 — mg)# + mj J — J
(2 — carp) i tH ;3 (2—cjip)th (27— cjap)2th

and
(3.7)

So1 o2k n s c%fk 5 C%;k
O=(mq+mg) 2t B Ny [t L %2 T2

021 (2 — ey p) FHE ]Z—; et 2= ciup)ith i (2 cjop) 2 HE

We now fix p and rewrite (3.0) and [B7) defining
14k
2

(ZCJZW = aji(p)gji(p)k,
—¢ji

where
%
c2 Cis
3.8 aii(p) = —L— and g;(p) = —L—.
(3.8) ji(p) 2- Cjip)% g5i(p) 2— Ciip)
Then B8] and B71) become
(3.9) 0 = (m1 — ma)asgs, + Z m; (aj1951 — a;295)
j=3

and

s - S Sj
(3.10) 0= (mi+ mz)ﬂamg% + ij L1“]'19;‘€1 - ﬁajgg;% :

Co1 = Cj1 Cj2

Note that the right-hand sides of (B3] and ([B.I0]) are linear combinations of expo-
nential functions in k, where k can vary in NU{0}. These exponential functions are
linearly independent, provided their bases are distinct. The main idea of the proof
will be to show that there is a function gé?l, j €{1,...,n}, in the linear combinations
of 39) and BI0) that does not cancel out in at least one of the equations (3.9)
and (3.10).

Let us assume the contrary. For a function gfl to be canceled out, we need to
be able to construct a linear combination of g}“l with other exponential functions
in the linear combinations of (39 and (BI0), with identical bases. Such functions
can be represented as g¥,, g, u, v € {1,....,n} for which 9i1 = Gu2, 9j1 = Gol-
However, due to (B8), g;1 = guz can only be the case if ¢;1 = cy2, and g;1 = g1
can only be the case if ¢;1 = cy1.

We need to take a closer look at the case that cj1 = cy2. After that, we will make
some further remarks about u, v € {1, ...,n} for which ¢j1 = ¢,2 and ¢j1 = ¢,1 hold
respectively, which will then allow us to move on to the final part of our proof.

For the case that ¢j1 = cy2, we have that by (2.6,

(3.11) a; — a1 = a, — az(mod 2m)
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or
(3.12) a; — o = ag — o, (mod 2m).
Consequently, this implies for BIT]) that
(3.13) 0y = 0 + g — o > @y

Note that by construction

(314) Qo — (1 S Qi1 — Oy,
Combining 314) with BI3]), we get
(315) aj <y =a5+0ag— o Saj+()éj+1 — 05 = Q41

So if (B11]) holds, then a; < av, < @jy1, 80 vy, = @41 and thus a1 —a; = as—ag.
If we assume that for every j a u exists such that [BIT)) is true, then

n

(3.16) 27 = Z(ajﬂ —a;) =nlag — o) = n(aj — o).

So a1 —ay = 27” for all j € {1,...,n}. However, we assumed that our polygon
was not regular, so there must be at least one j € {1,...,n} for which (3I2)) holds
and (BI1]) does not. This j will give us the desired contradiction.

Before moving on to the last part of the proof, we should make the following
observations: If there is a v such that c;; = cy1, then either a; + o, = 20 or
o + oy = 20 + 2m. Since a1 < a; and aq < o, o5 + oy, = 21 would mean that
j+ oy > a5+ Q.

If aj — aq = ag — o (mod 27), then o + @, = a1 + a2(mod 27).

If o; + ay, = o1 + g, then, as o, > o, ay, = a2 and oj = 1, as ag and ay are
the smallest angles available. However, o # oy, so o, = —aj + a1 + g + 27,

From this we derive:

I. If there is a v such that cj; = ¢y, then v is unique, a; — oy = a1 —
a,(mod 27) and s;1 = —Sy1.

II. If there is a u such that (312) holds, then w is unique, a; — 1 = ag —
ay(mod 27) and sj1 = —Sy2.

II. ¢y = cz7 implies that ag = ag, s, t, 5, t € {1,...,n}, s £, §# 1.
For the aforementioned value j there are now three possibilities:

1. For j there exists neither a value u such that (BI2) holds nor a value v
such that cj; = cy1.

2. For j there exists either a unique value u such that ([B.I2]) holds or a unique
value v such that cj; = cy1.

3. For j there exists both a unique value u such that (8I2) holds and a unique
value v such that cj; = cy1.

For the first possibility, 9;‘61 does not cancel out, as there are no other terms in
either linear combination ([3.9) or ([B.I0) that depend on it, which means we have a
contradiction.
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Let us consider the second possibility. If there exists a unique value u such that
(BII) holds, using items IT and IIT in the list above, in (3.10) the coefficients of g%

and g%, add up to

(3.17) aj (Cj—im] - Z“zmu> =a; (imj - —Cj—imu> = ajléi(mj +my,).
We should check that s;; is not equal to zero in (B.17):

sj1 = 0 if and only if sin (o; — 1) = 0 if and only if @; — a3 = 0(mod ).

Because «; # oy by the definition of uj;; and vj;, the only other possibility is
that a; — oy = 7, which would mean that 7 = ay — a,(mod 27). However, then
o, — ag = m(mod 27), which implies that (BII]) holds for j and w, which we chose
not to be the case.

Thus s;; # 0, which means that we can deduce the desired contradiction from
equation (B10).

Let us look at the second case when there exists a unique value v such that
¢j1 = ¢y1. Using item IIT of the list above, in (3.9), the coefficients of gé?l and gk,
add up to a;1(m; + m,), which gives the desired contradiction.

For possibility 3, using items I, II and IIT of the list above, the coefficients
of g, gy and gy add up to aji(m; + my, —m,) in BI) and they add up to
ajl%(mj —my+my,) in BI0). As m;, m, and m,, are all positive, the coefficients

of g%, g and gk, do not cancel out in at least one of the equations [.9) and
BI0), which gives us the desired contradiction. O
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