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TORIC HIRZEBRUCH-RIEMANN-ROCH

VIA ISHIDA’S THEOREM ON THE TODD GENUS

HAL SCHENCK

(Communicated by Irena Peeva)

Abstract. We give a simple proof of the Hirzebruch-Riemann-Roch theorem
for smooth complete toric varieties, based on Ishida’s result that the Todd

genus of a smooth complete toric variety is one.

1. Introduction

The Hirzebruch-Riemann-Roch theorem relates the Euler characteristic of a co-
herent sheaf F on a smooth complete n-dimensional varietyX to intersection theory
via the formula

(1) χ(F) =

∫
ch(F)Td(TX).

In [2], Brion and Vergne prove an equivariant Hirzebruch-Riemann-Roch theorem
for complete simplicial toric varieties. If the toric variety is actually smooth, it is
possible to derive (1) from their result. In this note, we give a simple direct proof
of (1) when X is a smooth complete toric variety. Such a variety is determined by
a smooth complete rational polyhedral fan Σ ⊆ NR, where N � Z

n is a lattice;
we write X for the associated toric variety XΣ. We will make use of the following
standard facts about toric varieties. First,

(2) Td(XΣ) =
∏

ρ∈Σ(1)

Dρ

1− e−Dρ
,

where Σ(k) denotes the set of k-dimensional faces of Σ. For τ ∈ Σ(k) there is an
associated torus invariant orbit O(τ ), and we use V (τ ) to denote the orbit closure

O(τ ), which has dimension n− k. A key fact is that (see [4], Proposition 3.2.7)

(3) V (τ ) = O(τ ) � XStar(τ).

Since Σ is smooth, all orbits are also smooth, and if ρi, ρj are distinct elements of
Σ(1), then (see [4], Lemma 12.5.7)

[Dρi |V (ρj)
] =

{
V (τ ) τ = ρi + ρj ∈ Σ

0 ρi, ρj are not both in any cone in Σ.
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The final ingredient we need is a result of Ishida: building on work of Brion [1], in
[5] Ishida shows that (1) holds for the structure sheaf of a smooth complete toric
variety X:

(4) 1 =

∫
Td(TX) =

[ ∏
ρ∈Σ(1)

Dρ

1− e−Dρ

]
n
.

2. The proof

For a smooth complete toric variety, any coherent sheaf has a resolution by line
bundles [3], so it suffices to consider the case F = OX(D). Let X = XΣ and recall
that Pic(X) is generated by the classes of the divisors Dρ, ρ ∈ Σ(1). We will show
that if (1) holds for a divisor D, then it also holds for D+Dρ and D−Dρ, for any
ρ ∈ Σ(1). We begin with the case D −Dρ and induct on the dimension of X.

A smooth complete toric variety of dimension one is simply P
1, so the base

case holds by Riemann-Roch for curves. Suppose the theorem holds for all smooth
complete fans of dimension < n and let Σ be a smooth complete fan of dimension
n. When D = 0 the result holds by Ishida’s theorem. Let ρ ∈ Σ(1) and partition
the rays of Σ as

Σ(1) = ρ ∪ Σ′(1) ∪ Σ′′(1),

where the rays in Σ′(1) are in one-to-one correspondence with the rays of the fan
Star(ρ). Let X ′ = XStar(ρ) � V (ρ). Tensoring the standard exact sequence

0 −→ OX(−Dρ) −→ OX −→ OX′ −→ 0

with OX(D) yields the sequence

0 −→ OX(D −Dρ) −→ OX(D) −→ OX′(D) −→ 0.

From the additivity of the Euler characteristic, we have

χ(OX(D))− χ(OX(D −Dρ)) = χ(OX′(D)).

Our hypotheses imply that∫
X′

eDTd(TX′) = χ(OX′(D)),∫
X

eDTd(TX) = χ(OX(D)),

so it suffices to show that

(5)

∫
X′

ch(D)Td(TX′) =

∫
X

(eD − eD−Dρ)Td(TX)

=

∫
X

eD
(1− e−Dρ

Dρ

)
DρTd(TX).

Break the Todd class of X into two parts:

Td(TX) =
∏

γ∈Σ′(1)∪ρ

Dγ

1− e−Dγ
·

∏
γ∈Σ′′(1)

Dγ

1− e−Dγ
.
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In (5), the term 1−e−Dρ

Dρ
cancels the corresponding term in Td(TX), so that

(6)

∫
X

eD
(1− e−Dρ

Dρ

)
DρTd(TX) =

∫
X

eDDρ

∏
γ∈Σ′(1)∪Σ′′(1)

Dγ

1− e−Dγ

=

∫
X

eDDρ

∏
γ∈Σ′(1)

Dγ

1− e−Dγ
.

The second equality follows since Dρ · Dγ = 0 if γ ∈ Σ′′(1). By smoothness, all
intersections are either zero or one, and thus∫

X

eDDρ

∏
γ∈Σ′(1)

Dγ

1− e−Dγ
=

[
eDDρ

∏
γ∈Σ′(1)

Dγ

1− e−Dγ

]
n

=
[
e
D|V (ρ)

∏
γ∈Σ′(1)

Dγ

1− e−Dγ

]
n−1

=

∫
X′

eD · Td(TX′).

This proves the result for D−Dρ. For D+Dρ, the result follows using the substi-
tution eDρ − 1 = eDρ(1− e−Dρ).

Question. Ishida’s proof (4) is not easy. Does there exist a simple proof of (4)?
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