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DECOMPOSITIONS OF LOOPED CO-H-SPACES

J. GRBIĆ, S. THERIAULT, AND J. WU

(Communicated by Brooke Shipley)

Abstract. We prove two homotopy decomposition theorems for the loops on
simply-connected co-H-spaces, including a generalization of the Hilton-Milnor
Theorem. Several examples are given.

1. Introduction

A central theme in mathematics is to decompose objects into products of simpler
ones. The smaller pieces should then be simpler to analyze, and by understanding
how the pieces are put back together information is obtained about the original ob-
ject. In homotopy theory this takes the form of decomposing H-spaces as products
of factors or decomposing co-H-spaces as wedges of summands. Powerful decom-
position techniques have been developed. Some, such as those in [MNT, CMN1],
are concerned with decomposing specific spaces as finely as possible, while others,
such as those in [SW1, STW2], are concerned with functorial decompositions that
are valid for all loop suspensions or looped co-H-spaces.

In this paper we establish two new decomposition theorems that apply to the
loops on simply-connected co-H-spaces. One is a strong refinement of a result
in [STW2], and the other is a generalized Hilton-Milnor Theorem, which depends
on methods introduced in [GTW]. We give several examples of how the two decom-
positions can be used, and combine the two to produce a complete decomposition
of the loops on a simply-connected co-H-space into a product of factors which are
functorially indecomposable (a term to be defined momentarily).

We work in the context of functorial decompositions. As such, it may be useful to
define some terms. Let CoH be the category of simply-connected co-H-spaces and
co-H-maps and let Top be the category of topological spaces and continuous maps.
A functorial homotopy decomposition is a pair of functors A,B : CoH −→ Top with
the property that for every Y ∈ CoH there is a natural homotopy decomposition
ΩY � A(Y )×B(Y ). In effect, this means that the construction of the decomposition
can be applied to any simply-connected co-H-space Y , and the output is natural for
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co-H-maps between co-H-spaces. Similarly, one can define a functorial homotopy
retract. The space A(Y ) is functorially indecomposable if there is no other functorial
homotopy decomposition of ΩY which factors A(Y ) into a product of nontrivial
factors. The decompositions of spaces we produce are predicted by corresponding
coalgebra decompositions of tensor algebras. Let V be the category of graded
Z/pZ-modules and morphisms, and let Coalg be the category of coalgebras and
coalgebra morphisms. A functorial coalgebra decomposition is a pair of functors
A,B : V −→ Coalg with the property that for every V ∈ V there is a natural
coalgebra decomposition T (V ) ∼= A(V ) ⊗ B(V ), where T (V ) is the free tensor
algebra on V . Similarly, we can define functorial coalgebra retracts and, as above,
we can also define functorially indecomposable coalgebras.

We now motivate and state our results. Let p be an odd prime, and localize all
spaces and maps at p. Take homology with mod-p coefficients. Let V be a graded
module over Z/pZ and let T (V ) be the tensor algebra on V . This tensor algebra
is given a Hopf algebra structure by declaring that the generators are primitive
and extending multiplicatively. In [SW1] it was shown that there is a functorial
coalgebra decomposition T (V ) ∼= Amin(V )⊗Bmax(V ), where Amin(V ) is the mini-
mal functorial coalgebra retract of T (V ) that contains V . The minimal statement
means that Amin(V ) is functorially indecomposable. One important property of
this decomposition is that the primitive elements of T (V ) of tensor length not a
power of p are all contained in the complement Bmax(V ). A programme of work
ensued to geometrically realize these tensor algebra decompositions, which we now
outline.

By the Bott-Samelson theorem, there is an algebra isomorphism H∗(ΩΣX) ∼=
T (H̃∗(X)). This was generalized in [Be2] to the case of a simply-connected co-

H-space Y : there is an algebra isomorphism H∗(ΩY ) ∼= T (Σ−1H̃∗(Y )), where

Σ−1H̃∗(Y ) is the desuspension by one degree of the graded module H̃∗(Y ). Let

V = Σ−1H̃∗(Y ) so H∗(ΩY ) ∼= T (V ). The coalgebra decomposition of T (V )

suggests that there are spaces Amin(Y ) and Bmax(Y ) such that H̃∗(A
min(Y )) ∼=

Amin(V ), H̃∗(B
max(Y )) ∼= Bmax(V ), and there is a homotopy decomposition ΩY �

Amin(Y ) × Bmax(Y ). Such a decomposition was realized in a succession of pa-
pers [SW1, SW2, STW1, STW2] which began with Y being a p-torsion double
suspension and ended with the general case of Y being a simply-connected co-H-
space.

However, the story does not end there, as the module Bmax(V ) has a much richer
structure. There is a coalgebra decomposition Bmax(V ) ∼= T (

⊕∞
n=2 QnB(V )),

where QnB(V ) is a functorial retract of V ⊗n. Ideally, this should be geometri-
cally realized as well. This was proved in [STW1] when Y is a simply-connected,
homotopy coassociative co-H-space. More precisely, there are spaces QnB(Y )

for n ≥ 2 such that H̃∗(QnB(Y )) ∼= ΣQnB(V ), a homotopy fibration sequence

ΩY
∗−→ Amin(Y ) −→

∨∞
n=2 QnB(Y ) −→ Y , and a homotopy decomposition

ΩY � Amin(Y )× Ω(
∨∞

n=2 QnB(Y )).
In the more general case of a simply-connected co-H-space Y , the geometric

realization of Amin(V ) in [STW2] produced a homotopy decomposition ΩY �
Amin(Y ) × Bmax(Y ), but it did not identify Bmax(Y ) as a loop space. The first
goal of this paper is to do exactly that.
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Theorem 1.1. Let Y be a simply-connected co-H-space and let V = Σ−1H̃∗(Y ).
There is a natural homotopy fibration sequence

ΩY −→ Amin(Y ) −→
∞∨

n=2

QnB(Y ) −→ Y

such that:

1) ΩY � Amin(Y )× Ω(
∨∞

n=2 QnB(Y ));

2) H̃∗(A
min(Y )) ∼= Amin(V );

3) for each n ≥ 2, H̃∗(QnB(Y )) ∼= ΣQnB(V ).

In fact, Theorem 1.1 is a special case of a more general theorem proved in
Section 2 which geometrically realizes any natural coalgebra-split sub-Hopf algebra
B(V ) of T (V ) as a loop space.

The construction of the space QnB(Y ) exists by a suspension splitting result
from [GTW]. To describe this, recall that James [J] proved that there is a homo-
topy decomposition ΣΩΣX �

∨∞
n=1 ΣX

(n), where X(n) is the n-fold smash of X

with itself. Note that H̃∗(ΣX
(n)) ∼= ΣH̃∗(X)⊗n. James’ decomposition was gener-

alized in [GTW]. If Y is a simply-connected co-H-space, then there is a homotopy
decomposition ΣΩY �

∨∞
n=1[ΣΩY ]n, where each space [ΣΩY ]n is a co-H-space

and there is an isomorphism H̃∗([ΣΩY ]n) ∼= Σ(Σ−1H̃∗(Y ))⊗n. Succinctly, [ΩΣY ]n
is an (n− 1)-fold desuspension of Y (n). A key point is that the space QnB(Y ) is a
retract of the co-H-space [ΣΩY ]n, so it too is a co-H-space.

Our second result is a generalization of the Hilton-Milnor Theorem, touched
upon in [GTW]. Recall that the Hilton-Milnor Theorem states that if X1, . . . , Xm

are path-connected spaces, then there is a homotopy decomposition

Ω(ΣX1 ∨ · · · ∨ ΣXm) �
∏
α∈I

Ω(ΣX
(α1)
1 ∧ · · · ∧X(αm)

m ),

where I runs over a Hall space basis of the (ungraded) free Lie algebra L〈x1, . . . ,
xm〉, and if wα is the basis element corresponding to α, then αi counts the number
of occurances of xi in wα. Note that if αi = 0, then, for example, we regard

X
(αi)
i ∧ X

(αj)
j as X

(αj)
j rather than as ∗ ∧ X(αj) � ∗. We generalize the Hilton-

Milnor Theorem by replacing each ΣXi by a simply-connected co-H-space.

Theorem 1.2. Let Y1, . . . , Ym be simply-connected co-H-spaces. There is a natural
homotopy decomposition

Ω(Y1 ∨ · · · ∨ Ym) �
∏
α∈I

ΩM((Yi, αi)
m
i=1),

where I runs over a vector space basis of the free Lie algebra L〈y1, . . . , ym〉 and:
1) each space M((Yi, αi)

m
i=1) is a simply-connected co-H-space;

2) H̃∗(M((Yi, αi)
m
i=1))

∼= Σ
(
(Σ−1H̃∗(Y1))

⊗α1 ⊗ · · · ⊗ (Σ−1H̃∗(Ym))⊗αm

)
;

3) if Yi = ΣXi for 1 ≤ i ≤ m, then M((Yi, αi)
m
i=1) � ΣX(α1) ∧ · · · ∧X(αm).

Again, if αi = 0 we interpret (Σ−1H̃∗(Yi))
⊗αi ⊗ (Σ−1H̃∗(Yj))

⊗αj ) as

Σ−1H̃∗(Yj))
αj rather than 0. Note that Theorem 1.2 (3) is the usual Hilton-Milnor

Theorem.
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Theorems 1.1 and 1.2 are very useful for producing homotopy decompositions of
interesting spaces. To obtain new examples, we consider co-H-spaces which are not
suspensions. The simplest example of such a space is the two-cell complex A defined

as the homotopy cofibre of the map S2p α1−→ S3, where α1 represents the generator
of π2p(S

3). By [Be1], A is not even homotopy coassociative. By Theorem 1.1,
ΩA � Amin(A) × Ω(

∨∞
i=2 QnB(Y )), a much more structured decomposition than

the decomposition ΩA � Amin(A)×Bmax(A) of [STW2]. The generalization of the
Hilton-Milnor theorem has a wealth of applications. As an example of wide inter-
est, by [MNT] there is a homotopy decomposition ΣCPn �

∨p−1
i=1 Ai, where H∗(Ai)

consists of those elements in H∗(ΣCP
n) in degrees of the form 2i+1+2j(p−1) for

some j ≥ 0. The spaces Ai are co-H-spaces since they retract off a suspension, but
they are usually not suspensions themselves. Applying Theorem 1.2, we obtain a
decomposition of ΩΣCPn � Ω(

∨p−1
i=1 Ai), which gives a great deal of new informa-

tion about the homotopy theory of ΣCPn. Another example of how the generalized
Hilton-Milnor theorem can be used is as follows. The symmetric group Σk on k
letters acts on A(k) by permuting the smash factors. Suspending so one can add, we
obtain a map from the group ring Z(p)[Σk] to the set of homotopy classes of maps

[A(k), A(k)]. In particular, suppose that e1, . . . , el ∈ Z(p)[Σk] is a family of mutually
orthogonal idempotents such that e1+ · · ·+el = 1. Then the corresponding maps ei
induce idempotents in homology. Let T (ei) be the mapping telescope of ei. Then

the sum of the telescope maps ΣA(k) −→
∨l

i=1 T (ei) induces an isomorphism in
homology and so is a homotopy equivalence. Each T (ei) is therefore a retract of a
suspension, implying that it is a co-H-space. Applying Theorem 1.2, we then have

a decomposition of ΩΣA(k) � Ω(
∨l

i=1 T (ei)) which gives a great deal of informa-

tion about the homotopy theory of ΣA(k). A useful special case is ΣA(2) when the
idempotents are e1 = 1

2 (1 − ΣT ) and e2 = 1 − e1, where T is the self-map of A(2)

that interchanges the factors.
Combining Theorems 1.1 and 1.2 allows for a complete decomposition of the

loops on a co-H-space into a product of functorially indecomposable spaces. That is,
Theorem 1.1 states that for a simply-connected co-H-space Y there is a homotopy
decomposition

ΩY � Amin(Y )× Ω(

∞∨
n=2

QnB(Y )),

where Amin(Y ) is functorially indecomposable. Since each space QnB(Y ) is a co-
H-space, Theorem 1.2 implies that there is a homotopy decomposition

Ω(
∞∨
n=2

QnB(Y )) �
∏
α∈I

ΩM((QnB(Y ), αn)
∞
n=2),

where each space M((QnB(Y ), αn)
∞
n=2) is a simply-connected co-H-space. The

homotopy decomposition in Theorem 1.1 can now be applied to each of the factors
ΩM((QnB(Y ), αn)

∞
n=2) to produce an Amin that is functorially indecomposable

and a complementary factor which is the loop on a wedge of simply-connected
co-H-spaces. Iterating, we obtain a decomposition of ΩY as a product of Amin’s.

Theorem 1.3. Let Y be a simply-connected co-H-space. Then there is a functorial
homotopy decomposition

ΩY �
∏
γ∈J

Amin(Yγ)
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for some index set J , where each Yγ is a simply-connected co-H-space and each
factor Amin(Yγ) is functorially indecomposable.

Theorem 1.3 can be thought of as a functorial analogue of Cohen, Moore and
Neisendorfer’s [CMN2] complete and explicit decomposition of the loops on a Moore
space as a product of indecomposable factors.

2. Geometric realization of natural coalgebra-split

sub-Hopf algebras

In this section we prove Theorem 1.1 as a special case of the more general The-
orem 2.3. This gives conditions for when a sub-Hopf algebra of a tensor algebra
has a geometric realization as a loop space. Before proving Theorem 2.3 it will be
useful to state two preliminary results.

The first preliminary result is Theorem 2.1, a geometric realization statement
from [STW2]. Recall that p is an odd prime, the ground ring for all algebraic
statements is Z/pZ, and all spaces and maps have been localized at p. In general,
if W is a (graded or ungraded) Z/pZ-module, the tensor algebra T (W ) is given the
structure of a Hopf algebra by saying that W is primitive. Thus T is a functor from
modules to coalgebras. A coalgebra retract of the functor T is a functor A from
ungraded modules to coalgebras such that A is a retract of T as functors from un-
graded modules to coalgebras. This means that there exist natural transformations
s : A −→ T and r : T −→ A such that:

1) sW : A(W ) −→ T (W ) and rW : T (W ) −→ A(W ) must be natural coalgebra
maps for every ungraded module W ;

2) the composite rW ◦ sW : A(W ) → A(W ) is the identity.

According to [SW1], the functor admits a canonical extension as a functor from
graded modules to graded coalgebras. Thus any coalgebra retractA of the functor T
on ungraded modules extends canonically to a coalgebra retract of T on graded
modules.

Now given a particular vector space, say E(V̄ ), we say that E(V̄ ) is a functorial
coalgebra retract of T (V ) if:

a) there exists a coalgebra retract A of the functor T , so A(W ) must a natural
coalgebra retract of T (W ) for any ungraded module W ;

b) A extends canonically to a functor on graded modules (where the same
name is used to denote both A and its extension);

c) evaluating on the particular module V̄ , we obtain a coalgebra isomorphism
A(V̄ ) = E(V̄ ).

Theorem 2.1. Suppose that the free graded tensor algebra functor T has a coalgebra
retract A. Then for any graded module V , A(V ) has a geometric realization. That
is, if Y is a simply-connected co-H-space such that there is an algebra isomorphism
H∗(ΩY ) ∼= T (V ), then there is a functorial homotopy retract Ā(Y ) of ΩY with the
property that H∗(Ā(Y )) ∼= A(V ).

For the interested reader, we have included an appendix which gives an example
to distinguish between a coalgebra retract and a functorial coalgebra retract of
T (V ), and how this fits with the existence or nonexistence of certain finite H-
spaces. As well, it might be noted that while we have restricted to an odd prime,
this geometric realization theorem is also useful at the prime 2. For example,
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in [CW], a very early version of these methods was used to produce a large family
of elements of order 8 in the homotopy groups of mod-2 Moore spaces, and in [GSW]
an earlier version of the geometric realization theorem for loop suspensions was used
to identify the “bottom” indecomposable factor of the loops on an odd-dimensional
mod-2 Moore space.

Let us return to odd primes. For the second preliminary result, given a functorial
coalgebra retract A(V ) of T (V ), let An(V ) be the component of A(V ) consisting
of homogeneous elements of tensor length n. The following suspension splitting
theorem was proved in [GTW].

Theorem 2.2. Let A(V ) be any functorial coalgebra retract of T (V ) and let Ā
be the geometric realization of A in Theorem 2.1. Then for any simply-connected
co-H-space Y of finite type, there is a functorial homotopy decomposition

ΣĀ(Y ) �
∞∨

n=1

Ān(Y )

such that Ān(Y ) is a functorial retract of [ΣΩY ]n and there is a coalgebra isomor-
phism

H̃∗(Ān(Y )) ∼= An(Σ
−1H̃∗(Y ))

for each n ≥ 1.

Now suppose that B(V ) is a sub-Hopf algebra of T (V ). We say that B(V ) is
coalgebra-split if the inclusion B(V ) −→ T (V ) has a natural coalgebra retraction.
Observe that the weaker property of B(V ) being a sub-coalgebra of T (V ) which
splits off T (V ) implies by Theorem 2.1 that B(V ) has a geometric realization B.
We aim to show that the full force of B(V ) being a sub-Hopf algebra of T (V )
implies that it has a much more structured geometric realization.

If M is a Hopf algebra, let QM be the set of indecomposable elements of M , and
let IM be the augmentation ideal of M . If B(V ) is a natural sub-Hopf algebra of
T (V ), then there is a natural epimorphism IB(V ) −→ QB(V ). Let Tn(V ) be the
component of T (V ) consisting of the homogeneous tensor elements of length n, and
let Bn(V ) = IB(V ) ∩ Tn(V ). Let QnB(V ) be the quotient of Bn(V ) in QB(V ).
Recall that CoH is the category of simply-connected co-H-spaces and co-H-maps
and let k = Z/pZ.

Theorem 2.3. Let B(V ) be a natural coalgebra-split sub-Hopf algebra of T (V ) and
let B̄ be its geometric realization. Then there exist functors Q̄nB from CoH to
spaces such that for any Y ∈ CoH:

1) Q̄nB(Y ) is a functorial retract of [ΣΩY ]n;
2) there is a functorial coalgebra isomorphism

Σ−1H̄∗(Q̄nB(Y )) ∼= QnB(Σ−1H̄∗(Y ));

3) there is a natural homotopy equivalence

B̄(Y ) � Ω

( ∞∨
n=1

Q̄nB(Y )

)
.

Proof. The proof is to give a geometric construction for the indecomposables of
B(V ). Let B[n](V ) be the sub-Hopf algebra generated by QiB(V ) for i ≤ n. By
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the method of proof of [LLW, Theorem 1.1], each B[n](V ) is a natural coalgebra-
split sub-Hopf algebra of T (V ), and there is a natural coalgebra decomposition

(2.1) B[n](V ) ∼= B[n−1](V )⊗A[n](V ),

where A[n](V ) = k⊗B[n−1](V ) B
[n](V ). Note that

QnB(V ) ∼= A[n](V )n.

By Theorem 2.1, the functorial coalgebra splitting in (2.1) has a geometric real-
ization as a natural homotopy decomposition

(2.2) B̄[n](Y ) � B̄[n−1](Y )× Ā[n](Y )

for some Y ∈ CoH. This induces a filtered decomposition with respect to the
augmentation ideal filtration of H∗(ΩY ). By Theorem 2.2,

ΣĀ[n](Y ) �
∞∨
k=1

Ā
[n]
k (Y ),

where Ā
[n]
k (Y ) is a functorial retract of [ΣΩY ]n and Ā

[n]
k (Y ) � ∗ for k < n because

A
[n]
k (V ) = 0 for 0 < k < n. Define

Q̄nB(Y ) = Ā[n]
n (Y ).

Let φn be the composite of inclusions

(2.3)

Q̄nB(Y ) = Ā
[n]
n (Y ) −→ ΣĀ[n](Y )

−→ Σ(B̄[n−1](Y )× Ā[n](Y ))
�−→ ΣB̄(Y )
−→ ΣΩY.

Consider the composite

(2.4) Ω

( ∞∨
n=1

Q̄nB(Y )

)
Ω(

∨∞
n=1 φn)−−−−−−→ ΩΣΩY

Ωσ−−−−−−→ ΩY
r−−−−−−→ B̄(Y ),

where σ is the evaluation map and r is the retraction map. We wish to show that
this composite induces an isomorphism in homology, implying that it is a homotopy
equivalence. The assertions of the theorem would then follow. To show that (2.4)
induces an isomorphism in homology, it suffices to filter appropriately and show
that we obtain an isomorphism of associated graded objects.

Let

H∗(ΩΣΩY ) = T (H̄∗(ΩY ))

be filtered by

InH∗(ΩΣΩY ) =
∑

t1r1+···+tsrs≥n

(It1H∗(ΩY ))⊗r1 ⊗ · · · ⊗ (ItsH∗(ΩY ))⊗rs .

Filter H∗(ΩY ) by the augmentation ideal filtration. Then

Ωσ∗ : H∗(ΩΣΩY ) −→ H∗(ΩY )

is a filtered map since Ωσ∗ is an algebra map. Let H∗(B̄(Y )) be filtered subject to
the augmentation ideal filtration of H∗(ΩY ). Then r∗ is a filtered map. Note that
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as an algebra

H∗

(
Ω

( ∞∨
n=1

Q̄nB(Y )

))
= T

( ∞⊕
n=1

Σ−1(H̄∗(Q̄nB(Y )))

)
,

which is filtered by∑
i1+···+it≥n

Σ−1(H̄∗(Q̄i1B(Y )))⊗ · · · ⊗ Σ−1(H̄∗(Q̄itB(Y ))).

Observe that φn∗ maps H̄∗(Q̄nB(Y )) into ΣInH∗(ΩY ) and the composite

(2.5) H̄∗(Q̄nB(Y ))
φn∗−→ ΣInH∗(ΩY ) � ΣInH∗(ΩY )/ΣIn+1H∗(ΩY )

is a monomorphism because Q̄nB(Y ) is obtained from the n-homogeneous compo-
nent of ΣĀ[n](Y ). Thus Ω(

∨∞
n=1 φn)∗ is a filtered map and the image of

E0(Ωσ∗ ◦ Ω(
∞∨

n=1

φn)∗)

is the sub-Hopf algebra of E0H∗(ΩY ) = T (Σ−1H̄∗(Y )) generated by

E0φn∗(Σ
−1H̄∗(Q̄nB(Y )))

for n ≥ 1. From (2.5),

Σ−1H̄∗(Q̄nB(Y )) ∼= E0φn∗(Σ
−1H̄∗(Q̄nB(Y ))).

By the construction of φn in (2.3), the modules

{E0φn∗(Σ
−1H̄∗(Q̄nB(Y )))}

are algebraically independent because Q̄iB(Y ) is mapped into ΣB[n](Y ) for i ≤ n
and Q̄[n](Y ) is mapped into ΣĀ[n](Y ), which is the complement to ΣB̄[n−1](Y ).
Since each Q̄nB(Y ) is mapped into ΣB̄(Y ),

Im(E0(Ωσ∗ ◦ Ω(
∞∨
n=1

φn)∗)) = T (E0φn∗(Σ
−1H̄∗(Q̄nB(Y ))))

is a sub-Hopf algebra of E0H∗(B̄(Y )) ⊆ T (Σ−1H̄∗(Y )). By computing the Poincaré
series,

Im(E0(Ωσ∗ ◦ Ω(
∞∨

n=1

φn)∗)) = E0H∗(B̄(Y )).

Since r : ΩY −→ B̄(Y ) is a retraction map,

E0r∗|E0H∗(B̄(Y )) = idE0H∗(B̄(Y )).

Therefore the composite

E0r∗ ◦ E0(Ωσ∗) ◦ E0Ω(
∞∨
n=1

φn)∗

of associated graded objects induced by the composition in (2.4) is an isomorphism,
as required. �



DECOMPOSITIONS OF LOOPED CO-H-SPACES 1459

The proof of Theorem 2.3 does more. Recall the map Q̄nB(Y ) −→ ΣΩY de-
fined in (2.3). Taking the wedge sum for n ≥ 1 and then evaluating, we obtain a
composite

φ :

∞∨
n=1

Q̄nB(Y )
∨∞

n=1 φn−−−−→ ΣΩY
σ−−−−→ Y.

The thrust of the proof of Theorem 2.3 was to show that the composite in (2.4) is a
homotopy equivalence. That is, the composite r◦Ωφ is a homotopy equivalence. In
particular, this implies that Ωφ has a functorial retraction. Consequently, if Ā(Y )
is the homotopy fiber of φ we immediately obtain the following.

Theorem 2.4. Let B(V ) be a natural coalgebra-split sub-Hopf algebra of T (V ) and
let the functor A be given by A(V ) = k ⊗B(V ) T (V ). Then there is a homotopy
fibration sequence

Ω

( ∞∨
n=1

Q̄nB(Y )

)
Ωφ−→ ΩY −→ Ā(Y ) −→

∞∨
n=1

Q̄nB(Y )
φ−→ Y,

where Y ∈ CoH and a functorial decomposition

ΩY � Ω

( ∞∨
n=1

Q̄nB(Y )

)
× Ā(Y ).

Note that Ā is a geometric realization of A.

Proof of Theorem 1.1. In Theorem 2.4 we can choose B(V ) to be Bmax(V ). The
fiber Ā(Y ) of φ is now, by definition, Amin(Y ). The theorem follows immediately.

�

3. The generalization of the Hilton-Milnor Theorem

In this section we prove Theorem 1.2. We begin by stating a key general result
from [GTW].

Theorem 3.1. Let Y and Z be simply-connected co-H-spaces. There is a natural
homotopy decomposition

Z ∧ ΩY �
∞∨

n=1

[Z ∧ ΩY ]n

such that:

1) each space [Z ∧ ΩY ]n is a simply-connected co-H-space;

2) H̃∗([Z ∧ ΩY ]n) ∼= H̃∗(Z)⊗ (Σ−1H̃∗(Y ))⊗n;
3) if Z = S1 and Y = ΣX, then [Z ∧ ΩΣX]n � ΣX(n).

In particular, if Z = S1, then we obtain a homotopy decomposition of ΣΩY which
generalizes James’ decomposition of ΣΩΣX, as discussed in the Introduction. The
application of Theorem 3.1 that we need is the following.

Proposition 3.2. Let Y1, . . . , Ym be simply-connected co-H-spaces. There is a
natural homotopy decomposition

ΣΩY1 ∧ · · · ∧ ΩYm �
∞∨

n1,...,nm=1

M((Yi, ni)
m
i=1)
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such that:

1) each space M((Yi, ni)
m
i=1) is a simply-connected co-H-space;

2) H̃∗(M((Yi, ni)
m
i=1))

∼= Σ
(
(Σ−1H̃∗(Y1))

⊗n1 ⊗ · · · ⊗ (Σ−1H̃∗(Ym))⊗nm

)
;

3) if Yi = ΣXi for 1 ≤ i ≤ m, then M((ΣXi, ni)
m
i=1) � ΣX(n1) ∧ · · · ∧X(nm).

Proof. First, consider the special case when m = 1. We wish to decompose ΣΩY1.
Applying Theorem 3.1 with Z = S1 and Y = Y1, we obtain a homotopy decompo-
sition

ΣΩY �
∞∨

n1=1

M(Y1, n1),

where M(Y1, n1) = [ΣΩY1]n1
. In particular, M(Y1, n1) is a simply-connected co-H-

space, H̃∗(M(Y1, n1)) ∼= Σ(Σ−1H̃∗(Y1))
⊗n1 , and if Y1 = ΣX1, then M(ΣX1, n1) �

ΣX
(n1)
1 .
Next, consider the special case when m = 2. We wish to decompose ΣΩY1∧ΩY2.

From the m = 1 case we have

ΣΩY1 ∧ ΩY2 �
( ∞∨

n1=1

M(Y1, n1)

)
∧ ΩY2 �

∞∨
n1=1

M(Y1, n1) ∧ ΩY2.

Since M(Y1, n1) is a co-H-space, for each n1 ≥ 1 we can apply Theorem 3.1 with
Z = M(Y1, n1) and Y = Y2 to further decompose M(Y1, n1) ∧ ΩY2. Collecting
these, we obtain a homotopy decomposition

ΣΩY1 ∧ ΩY2 �
∞∨

n1,n2=1

M((Yi, ni)
2
i=1),

where each space M((Yi, ni)
2
i=1) is a simply-connected co-H-space,

H̃∗(M((Yi, ni)
m
i=1))

∼= Σ
(
(Σ−1H̃∗(Y1))

⊗n1 ⊗ (Σ−1H̃∗(Y2))
⊗n2

)
and if Yi = ΣXi, then M((Yi, ni)

2
i=1) � ΣX

(n1)
1 ∧X(n2).

More generally, ifm > 2, then the procedure in the previous paragraph is iterated
to obtain the homotopy decomposition asserted in the statement of the proposition.

�

Next, we state a homotopy decomposition proved in [P]. For a space X and an

integer j, let j ·X =
∨j

i=1 X.

Theorem 3.3. Let X1, . . . , Xm be simply-connected CW -complexes of finite type.
Let F be the homotopy fiber of the inclusion

∨m
i=1 Xi −→

∏m
i=1 Xi. There is a

natural homotopy equivalence

F �
m∨
j=2

⎛⎝ ∨
1≤i1<···<ij≤m

(j − 1) · ΣΩXi1 ∧ · · · ∧ ΩXij

⎞⎠ .

Remark 3.4. A version of Theorem 3.3 holds for an infinite wedge
∨∞

i=1 Xi, provided
the spaces Xi can be ordered so that the connectivity of Xi is nondecreasing and
tends to infinity. This guarantees that the fiber F of the inclusion

∨∞
i=1 Xi −→∏∞

i=1 Xi is of finite type.
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Proof of Theorem 1.2. The proof follows along the same lines as the proof of the
usual Hilton-Milnor Theorem when Yi = ΣXi. So it may be useful when reading
to keep in mind this special case.

First, including the wedge into the product gives a homotopy fibration

F1 −→
m∨
i=1

Yi −→
m∏
i=1

Yi

that defines the space F1. This fibration splits after looping as

(3.1) Ω(

m∨
i=1

Yi) �
m∏
i=1

ΩYi × ΩF1.

Second, by Theorem 3.3,

F1 �
m∨
j=2

⎛⎝ ∨
1≤i1<···<ij≤m

(j − 1) · ΣΩYi1 ∧ · · · ∧ ΩYij

⎞⎠ .

Applying the generalization of the James decomposition in Proposition 3.2 we can
decompose each term ΣΩYi1 ∧ · · · ∧ ΩYij to obtain a refined decomposition

F1 �
∨

α1∈J1

Mα1

for some index set J1, where the summands Mα1
have the property that

H∗(Mα1
) ∼= Σ

(
(Σ−1H̃∗(Yt1)

⊗n1 )⊗ · · · ⊗ (Σ−1H̃∗(Ytl)
⊗nm )

)
for indices l ≥ 2, 1 ≤ t1 < · · · < tl ≤ m and n1, . . . , nl ≥ 1. Third, including the
wedge into the product gives a homotopy fibration

F2 −→
∨

α1∈J1

Mα1
−→

∏
α1∈J1

Mα1

which defines the space F2. This fibration splits after looping, so (3.1) refines to a
decomposition

(3.2) Ω(

m∨
i=1

Yi) �
m∏
i=1

ΩYi ×
∏

α1∈J1

ΩMα1
× ΩF2.

Observe that since each Yi is simply-connected, the spaces Mα1
can be ordered

so that their connectivity is nondecreasing and tending to infinity. Therefore, Re-
mark 3.4 implies that Theorem 3.3 can be applied to decompose F2. The process
can now be iterated to produce fibers Fk for k ≥ 3 and a decomposition

(3.3) Ω(

m∨
i=1

Yi) �
m∏
i=1

ΩYi ×

⎛⎝k−1∏
j=1

∏
αj∈Jj

ΩMαj

⎞⎠× ΩFk,

where each Mαj
has the property that

H∗(Mα1
) ∼= Σ

(
(Σ−1H̃∗(Yt1)

⊗n1 )⊗ · · · ⊗ (Σ−1H̃∗(Ytl)
⊗nm )

)
for indices l ≥ j + 1, 1 ≤ t1 < · · · < tl ≤ m and n1, . . . , nl ≥ 1. Note that the
condition l ≥ j +1 implies that the connectivity of Fk is strictly increasing with k,
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and so tends to infinity. Thus, the decompositions of Ω(
∨m

i=1 Yi) stabilize, giving a
homotopy decomposition

Ω(
m∨
i=1

Yi) �
m∏
i=1

ΩYi ×
∏
α∈J

Mα

for some index set J . What remains is a bookkeeping argument that makes explicit
the index set J . Since the bookkeeping is recording the tensor algebra terms

(Σ−1H̃∗(Yt1)
⊗n1 )⊗ · · · ⊗ (Σ−1H̃∗(Ytl)

⊗nm ), it is the same bookkeeping process as
in the usual Hilton-Milnor Theorem. Thus the index set J can be taken to be the
Hall basis of the (ungraded) free Lie algebra on m letters. �

4. Appendix

In this appendix we give an example which distinguishes between a coalgebra
retract of a tensor algebra and a functorial coalgebra retract. Let p = 3 and let
V = Z/3Z{u, v} be a two-dimensional Z/3Z-vector space, where |u| and |v| are
odd. Let E(V ) be the exterior algebra generated by V , and let T (V ) be the tensor
algebra generated by V . Then by [W], E(V ) is a coalgebra retract of T (V ), and
this holds even if one puts any possible Steenrod algebra structure on V . However,
we will show that E(V ) is not a functorial coalgebra retract of T (V ).

This is an important distinction. For if E(V ) were a functorial coalgebra retract
of T (V ), then Theorem 2.1 would imply that there is a simply-connected H-space
X such that H∗(X;Z/3Z) ∼= E(V ). However, this contradicts [Z], which states that
if V = {ū, v̄} with |ū| = 2n − 1, |v̄| = 2n + 3, P1

∗ (v̄) = ū, n > 2 and n �≡ 0 mod 3,
then there is no finite H-space X such that H∗(X;Z/3Z) ∼= E(V ).

Proposition 4.1. At p = 3, E(V ) is not a functorial coalgebra retract of T (V ).

Proof. Aiming for a contradiction, suppose that E(V ) is a functorial coalgebra
retract of T (V ). By definition of functorial coalgebra retract (see Section 2), there
exists a coalgebra retract A of the functor T such that A(V ) and E(V ) coincide. To
be clear, any choice of coalgebra retract A of T such that A(V ) = E(V ) would go
to show that E(V ) is a functorial coalgebra retract. By [SW1], there is a smallest
coalgebra retract Amin of T with the property that W ⊆ Amin(W ) ⊆ T (W ) for any
graded Z/3Z-module W . In our case, we have V ⊆ A(V ) = E(V ) ⊆ T (V ), so by
minimality, Amin(V ) ⊆ A(V ). Thus we may assume that A = Amin.

For n ≥ 2, let Ln be the Lie functor which takes a module W to the module
of homogeneous Lie brackets of length n in T (W ). Let Tn be the tensor power
functor which takes a module W to the module of length n tensor elements in
T (W ). Let Lmax

n be the largest summand of Ln which is also a summand of Tn.
By [SW1], Lmax

n exists and is unique up to natural equivalence. Diagrammatically,
this states that there is a natural commutative diagram

(4.1)

Tn(W ) = W⊗n βn �� Ln(W )
i ��

π

��

Tn(W ) = W⊗n

Lmax
n (W )

φ

��

Lmax
n (W )

for any graded module W , where βn is an epimorphism, i is an inclusion, and the
composite i ◦ βn sends an element a1 ⊗ · · · ⊗ an to the iterated graded commutator
[[a1, a2], . . . , an].
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By [SW1], there is a coalgebra decomposition

(4.2) T (V ) ∼= Amin(V )⊗Bmax(V ),

where Bmax(V ) is the sub-Hopf algebra of T (V ) generated by {Lmax
n (V )}∞n=2. The

decomposition (4.2) induces a decomposition of Lie elements

L3(V ) ∼= L3(B
max(V ))⊗ L3(A

min(V )).

But L3(B
max(V )) = Lmax

3 (V ) since Bmax(V ) is generated by Lmax
n (V ) for n ≥ 2,

and L3(A
min(V )) = 0 since Amin(V ) = E(V ). Thus L3(V ) ∼= Lmax

3 (V ).
Note that the isomorphism L3(V ) ∼= Lmax

3 (V ) holds regardless of the Steenrod
algebra structure on V . We will show that this isomorphism leads to a contra-
diction if we assume that V = {u, v} with P1

∗ (v) = u. A basis for L3(V ) is
{[u, v], v], [[u, v], u]}. Let A = [[u, v], v] and observe that

A = [[u, v], v] = [u, v]v − v[u, v] = (uv + vu)v − v(uv + vu) = uv2 − v2u.

In V ⊗3, let a = v2 and b = P1
∗ (a) = uv + vu. Observe that

(4.3) P1
∗ (v

3) = P1
∗ (av) = bv + au = (uv + vu)v + v2u = uv2 + vuv + v2u

= A+ v(uv − vu).

Next, observe that the map V ⊗3 β3−→ L3(V ) factors as a composite

V ⊗3 r−→ V ⊗ L2(V )
s−→ L3(V ).

A basis for L2(V ) is {[u, u], [v, v], [u, v]}. Note that [u, u] = 2u2 = −u2; similarly
[v, v] = −v2, and [u, v] = uv+vu. In particular, r(v3) = v3 while r(v(uv−vu)) = 0.
Thus applying r to (4.3) we obtain

(4.4) P1
∗ (v

3) = A

in V ⊗ L2(V ). On the other hand, since β3 = s ◦ r, (4.1) implies that L3(V ) ∼=
Lmax
3 (V ) retracts off V ⊗L2(V ). But no such retraction can exist by (4.4) and the

fact that A is the highest dimensional element in L3(V ). �
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