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FIXED-POINT FREE ENDOMORPHISMS

AND HOPF GALOIS STRUCTURES

LINDSAY N. CHILDS

(Communicated by Ted Chinburg)

Abstract. Let L|K be a Galois extension of fields with finite Galois group
G. Greither and Pareigis showed that there is a bijection between Hopf Ga-
lois structures on L|K and regular subgroups of Perm(G) normalized by G,
and Byott translated the problem into that of finding equivalence classes of
embeddings of G in the holomorph of groups N of the same cardinality as
G. In 2007 we showed, using Byott’s translation, that fixed point free en-
domorphisms of G yield Hopf Galois structures on L|K. Here we show how
abelian fixed point free endomorphisms yield Hopf Galois structures directly,
using the Greither-Pareigis approach and, in some cases, also via the Byott
translation. The Hopf Galois structures that arise are “twistings” of the Hopf
Galois structure by Hλ, the K-Hopf algebra that arises from the left regular
representation of G in Perm(G). The paper concludes with various old and
new examples of abelian fixed point free endomorphisms.

1. Hopf Galois structures

We first review the Greither-Pareigis approach to Hopf Galois structures.
Let G be a finite group. The left (resp. right) regular representation λ (resp. ρ)

of G in Perm(G) is the map from G to Perm(G) given by

λ(σ)(τ ) = στ,

resp.

ρ(σ)(τ ) = τσ−1,

for σ, τ in G.
Let the field L be a Galois extension of the field K with Galois group G. To

find Hopf Galois structures on L|K, we start by finding Hopf Galois structures on
GL|L, where GL = Map(G,L) =

∑
σ∈G Lxσ, with xσ(τ ) = δσ,τ . If N is a regular

subgroup of Perm(G), then N acts on GL via

η(axσ) = axη(σ)

for a in L, η in N . This action makes GL into an LN -Hopf Galois extension of L.
Conversely, if H is an L-Hopf algebra making GL|L into a Hopf Galois extension,
then H = LN for some regular subgroup N of Perm(G) with the action as just
described.
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If the regular subgroup N of Perm(G) is normalized by λ(G), then G acts on
LN via

σ(aη) = σ(a)λ(σ)ηλ(σ−1)

and on GL via
σ(axτ ) = σ(a)xλ(σ)(τ) = σ(a)xστ .

The fixed ring of GL under the action of G is isomorphic to L via the map

a �→
∑

σ∈G

σ(a)xσ,

and the action LN ⊗L GL → GL descends uniquely to a Hopf Galois action of the
K-Hopf algebra H = LNG on GLG ∼= L. Greither and Pareigis [GP87] show that
in this way every Hopf Galois structure on L|K corresponds to a unique regular
subgroup N of Perm(G) normalized by λ(G).

If N = ρ(G), the image of the right regular representation of G in Perm(G),
then the action of ρ(G) on GL is by

ρ(τ )(axσ) = axρ(τ)(σ) = axστ−1

for a in L. Since λ(G) commutes with ρ(G) in Perm(G), the action of λ(G) on
ρ(G) is trivial, and so LNG = KG and the action of ρ(G) on GL descends to the
usual action of G on L:

ρ(τ )(
∑

σ

σ(a)xσ) =
∑

σ

σ(a)xστ−1

=
∑

π

π(τ (a))xπ,

which corresponds to τ (a) in L. Thus we recover the action on L by the Galois
group G of L|K. But if G is nonabelian and N = λ(G), then the action of λ(G) on
GL is via

λ(τ )(axσ) = axλ(τ)(σ) = axτσ,

which descends to an action on L of LNG = Hλ, where

Hλ = {
∑

σ∈G

aσσ :
∑

σ∈G

aσσ =
∑

σ∈G

τ (aσ)τστ
−1},

a K-Hopf algebra which has basis elements of the form
∑

τ

τ (a)τστ−1,

where σ runs through representatives of the conjugacy classes of G, and for each
σ, a is chosen from a K-basis of LS , where S is the centralizer of σ, and the sum
is over elements τ in a transversal of S in G.

Every nonabelian Galois extension L|K of fields has at least these two distinct
Hopf Galois structures, the classical structure by the Galois group, corresponding
to ρ, and the Hopf Galois structure by Hλ, corresponding to λ. The two actions
coincide if G is abelian.

For G a nonabelian simple group, it was shown in [By04], extending [CaC99],
that the Hopf Galois structures corresponding to λ and ρ are the only possible
Hopf Galois structures on a Galois extension with Galois group G. For certain cyclic
Galois groups G, the classical Galois structure is the only Hopf Galois structure; see
[By96]. But for many groups G there are large numbers of Hopf Galois structures
on Galois extensions of fields with Galois group G.
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A number of papers have studied Hopf Galois structures, in part because of po-
tential applications to Galois module theory. For a survey of results from the 20th
century, see [Ch00], Chapter 2; for an interesting application to local Galois module
theory, see [By02]. The Greither-Pareigis approach to finding Hopf Galois struc-
tures can be difficult in general, because of the size of Perm(G). (See [Ko07] for
the most extensive attempt to classify Hopf Galois structures using the Greither-
Pareigis framework.) For that reason, a translation of the Greither-Pareigis clas-
sification, formally codified by Byott [By96], has been utilized in most subsequent
work related to classifying Hopf Galois structures. This was the case in [CCo07],
which first explicitly observed a connection between fixed point free endomorphisms
and Hopf Galois structures. On the other hand, it has been relatively difficult to
describe Hopf Galois structures that arise from Byott’s translation.

We review Byott’s translation below.

Definition 1. An endomorphism ψ of G is abelian if ψ(στ ) = ψ(τσ) for all σ, τ in
G.

The main point of the present paper is that abelian fixed point free endomor-
phisms yield Hopf Galois structures quite straightforwardly using the Greither-
Pareigis approach and can also yield structures easily via Byott’s translation as
well. We show in the second half of the paper that there are many examples.

2. Fixed point free endomorphisms

Let ψ be an endomorphism of the Galois group G. Define a homomorphism

αψ : G → Perm(G)

by

αψ(σ) = λ(σ)ρ(ψ(σ)).

Since λ(G) and ρ(G) commute and λ, ρ and ψ are homomorphisms, it is routine
to check that αψ is a homomorphism from G into Perm(G), and so αψ(G) is a
subgroup of Perm(G).

The subgroup αψ(G) is a regular subgroup of Perm(G) provided that G =
αψ(G)(e), where e is the identity element of the set G on which Perm(G) acts.
But this is so iff

G = {λ(σ)ρ(ψ(σ))(e) : σ ∈ G}
= {σeψ(σ)−1 : σ ∈ G}
= {σψ(σ)−1 : σ ∈ G}.

The function σ �→ σψ(σ−1) is onto G iff it is one-to-one iff for all σ, τ in G,

σψ(σ−1) = τψ(τ−1) implies σ = τ.

But σψ(σ−1) = τψ(τ−1) iff τ−1σ = ψ(τ−1σ). So G = αψ(G)(e) if and only if ψ is
fixed point free, that is, the only element π of G for which ψ(π) = π is the identity
element of G.

If ψ is the trivial endomorphism, then ψ is abelian and fixed point free, and
αψ = λ.

We want to know when two fixed point free endomorphisms yield the same
regular subgroup of Perm(G).
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Theorem 2. Let ψ, ψ′ be fixed point free endomorphisms of a finite group G. Then
αψ(G) = αψ′(G) if and only if there exists a fixed point free endomorphism ζ : G →
G with image in Z(G), the center of G, so that for all σ in G,

ψ′(σ) = ψ(σζ(σ−1))ζ(σ).

Given ψ, ψ′, the endomorphism ζ is unique. If ψ is abelian and αψ(G) = αψ′(G),
then ψ′ is abelian.

Proof. Let ψ be a fixed point free endomorphism of G and let ζ : G → G be a
fixed point free endomorphism of G with image in Z(G). (Then ζ is abelian.) Let
π : G → G by π(σ) = σζ(σ−1). Then π is a homomorphism of G because ζ is a
homomorphism with image in Z(G). Also, π is one-to-one, hence an automorphism
of G, because ζ is fixed point free. Define ψ′ : G → G by

ψ′(σ) = ψ(π(σ))π(σ−1)σ = ψ(π(σ))ζ(σ).

Then ψ′ is an endomorphism of G, since ζ(σ) is in Z(G), and is easily seen to be
fixed point free and abelian if ψ is abelian. Now for η in G we have

αψ′(σ)(η) = σηψ′(σ−1)

= σηζ(σ−1)ψ(π(σ−1))

= σζ(σ−1)ηψ(π(σ−1))

= π(σ)ηψ(π(σ−1))

= αψ(π(σ))(η).

So
αψ′(G) = αψ(G).

Conversely, let ψ, ψ′ be fixed point free endomorphisms of G with αψ(G) =
αψ′(G). Then there is a unique permutation π of G so that

αψ′(σ) = αψ(π(σ))

for all σ in G. Since αψ and αψ′ are injective endomorphisms from G to Perm(G),
it follows that π is a homomorphism, hence an automorphism of G.

Applying the permutation αψ′(σ) to the identity element e of the set G yields

αψ′(σ)(e) = αψ(π(σ))(e),

which yields
σψ′(σ−1) = π(σ)ψ(π(σ−1)).

Then for all η in G, the identity

αψ′(σ)(η) = αψ(π(σ))(η)

yields
σηψ′(σ−1) = π(σ)ηψ(π(σ−1))

= π(σ)ηπ(σ−1)σψ′(σ−1),

which implies that
π(σ−1)ση = ηπ(σ−1)σ.

Thus π(σ−1)σ is in the center Z(G) ofG. If we define ζ : G → G by ζ(σ) = π(σ−1)σ,
then ζ is an abelian endomorphism of G with image in Z(G), ζ is fixed point free
since π is an automorphism of G, and we have

ψ′(σ) = ψ(π(σ))ζ(σ) = ψ(σζ(σ−1))ζ(σ).
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Since ψ is fixed point free, it follows easily that ζ is unique. If ψ is abelian, then
one sees easily that ψ′ is abelian. �

Let F ⊇ Fab ⊇ Z be the set of fixed point free endomorphisms of G, resp.
abelian fixed point free endomorphisms, resp. fixed point free endomorphisms with
image contained in the center Z(G) of G.

Corollary 3. The number of Hopf Galois structures on GL|L induced by fixed
point free endomorphisms of G is #F/#Z. If G has trivial center, then every fixed
point free endomorphism of G yields a distinct Hopf Galois structure of LG on GL
induced by the regular subgroup αψ(G) of Perm(G).

Proof. The Hopf Galois structures on GL|L are in one-to-one correspondence with
regular subgroups of Perm(G), by [GP87]. For ψ, ψ′ in F , if we write ψ ∼ ψ′ if
αψ(G) = αψ′(G), then ∼ is an equivalence relation on F , and by Theorem 2, the
equivalence class of each ψ in F has the same cardinality as Z. So #F/#Z is the
number of equivalence classes. The last sentence of the corollary corresponds to
#Z = 1. �

The action of αψ(G) on GL is given by

αψ(τ )(axσ) = axλ(τ)ρ(ψ(τ))(σ) = axτσψ(τ−1).

Thus the αψ(G)-action on GL may be viewed as a twisting by the endomorphism
ψ of the λ(G)-action on GL.

3. K-Hopf Galois structures

For ψ a fixed point free endomorphism of G, we have the regular embedding
αψ : G → Perm(G) by αψ(σ) = λ(σ)ρ(ψ(σ)). For αψ to yield a K-Hopf algebra
structure on L, αψ(G) must be normalized by λ(G).

Proposition 4. If ψ is abelian, then αψ(G) is normalized by λ(G).

Proof. If we conjugate αψ(σ) by λ(τ ) for σ, τ in G, we obtain

λ(τ )αψ(σ)λ(τ )
−1 = λ(τ )λ(σ)ρ(ψ(σ))λ(τ )−1

= λ(τ )λ(σ)λ(τ )−1ρ(ψ(σ))

= λ(τστ−1)ρ(ψ(σ)).

This equals αψ(τστ
−1) if ψ(σ) = ψ(τστ−1). �

Theorem 5. Each abelian fixed point free endomorphism of G yields an Hλ-Hopf
Galois structure on L|K.

Proof. If ψ is an abelian fixed point free endomorphism of G, then αψ(G) yields a

Hopf Galois structure on L|K by the K-Hopf algebra Hψ = Lαψ(G)λ(G). Recalling

that Hλ = Lλ(G)λ(G), we show that Hλ is isomorphic to Hψ as K-Hopf algebras.
The map sending λ(σ) to λ(σ)ρ(ψ(σ)) is an isomorphism of groups and induces

an L-Hopf algebra isomorphism f : Lλ(G) → Lαψ(G) of the corresponding group
rings. We need to see if f respects the action of G on Hλ and Hψ. So we ask, is

f(τ (aλ(σ))) = τf(aλ(σ))?



1260 LINDSAY N. CHILDS

The left side is
f(τ (aλ(σ))) = f(τ (a)λ(τ )λ(σ)λ(τ−1))

= f(τ (a)λ(τστ−1))

= τ (a)λ(τστ−1)ρ(ψ(τστ−1)),

while the right side is

τf(aλ(σ)) = τ (aλ(σ)ρ(ψ(σ)))

= τ (a)λ(τ )λ(σ)ρ(ψ(σ))λ(τ−1)

= τ (a)λ(τ )λ(σ)λ(τ−1)ρ(ψ(σ)).

Thus f respects the G-action iff for all σ, τ in G,

ρ(ψ(τστ−1)) = ρ(ψ(σ)),

which holds since ψ is abelian.
Thus f is a G-module homomorphism, hence induces an isomorphism from Hλ =

Lλ(G)G to Hψ = Lαψ(G)G. �

Corollary 6. The number of Hλ-Hopf Galois structures on L|K induced from
abelian fixed point free endomorphisms of G is #Fab/#Z. In particular, if the cen-
ter of G is trivial, then the Hλ-Hopf Galois structures arising from endomorphisms
in Fab are all distinct.

Remark 7. Given an endomorphism ψ of G, [CaC99] and [CCo07] also considered
the embedding βψ : G → Perm(G) given by βψ(g) = λ(ψ(g))ρ(g). One may verify
easily that if the center of G is trivial, then βψ(G) is normalized by λ(G) iff ψ(G) is
trivial, in which case βψ(G) = ρ(G), which descends to the classical Galois structure
on L|K.

4. Byott’s translation

As noted above, a useful way to count Hopf Galois structures on a Galois exten-
sion L|K with Galois group G is via Byott’s translation. Given a finite group G,
let N be a group of the same cardinality as G. Byott’s translation shows that each
regular embedding of G into Hol(N) ⊂ Perm(N) yields a Hopf Galois structure
on a Galois extension of fields with Galois group G. Since Hol(G) ∼= G � Aut(G)
is often a much more well-understood group than Perm(G), the Byott translation
approach has been used successfully to count Hopf Galois structures, for example
in [By96], [CaC99], [Ch03], [By04], [Ch05], [CCo07], [Ch07].

To get from a regular embedding β of G into Hol(N) = ρ(N) · Aut(N) to a
regular subgroup α(N) of Perm(G), we use β to define a function (usually not
a homomorphism) b : G → N by b(σ) = β(σ)(eN) (where eN is the identity
element of N). Then b is necessarily a bijection by regularity of β, so yields a
homomorphism from Perm(G) to Perm(N) by conjugation: π in Perm(G) maps
to bπb−1. This then yields a regular embedding α of N in Perm(G) whose image
α(N) is normalized by λ(G), namely,

α(η) = b−1λ(η)b.

Thus for σ in G,

α(η)(σ) = b−1(ηb(σ)).
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The embedding α defines the action of the Hopf algebra LN on GL, and hence the
action of the K-Hopf algebra LNG on GLG ∼= L.

In practice, it can be difficult to identify the inverse of b. But for embeddings β
arising from some endomorphisms, we can identify b−1 and the embedding α.

LetN = G and let ψ be a (not necessarily abelian) fixed point free endomorphism
of G. Set β : G → Hol(G) by

β(σ) = λ(σ)ρ(ψ(σ)).

The corresponding function b : G → G is defined by

b(σ) = λ(σ)ρ(ψ(σ))(eG) = σψ(σ−1).

Then the corresponding embedding α : G → Perm(G) is

α(η)(τ ) = (b−1(λ(η)b))(τ )

= b−1(ητψ(τ−1)).

Thus to understand the regular embedding α, and hence the Hopf Galois action,
we need b−1.

Proposition 8. Let ψ, θ be fixed point free endomorphisms of G. Let b : G → G
by b(σ) = σψ(σ−1), and c : G → G by c(τ ) = τθ(τ−1). Then b and c are inverse
bijections if and only if for all σ in G,

θ(ψ(σ)) = ψ(σ)θ(σ).

Proof.

cb(σ) = c(σψ(σ−1))

= σψ(σ−1)θ(σψ(σ−1))−1

= σψ(σ−1)θ(ψ(σ))θ(σ−1).

Then cb(σ) = σ iff

σ = σψ(σ−1)θ(ψ(σ))θ(σ−1)

iff

θ(ψ(σ)) = ψ(σ)θ(σ). �

Given ψ, if there is an endomorphism θ so that θ(ψ(σ)) = ψ(σ)θ(σ), then we
call θ the inverse of ψ. The endomorphism θ is unique, since it is uniquely deter-
mined by c = b−1. It is easy to see that if ψ is abelian and θ is the inverse of ψ,
then θ is abelian. (Since abelian endomorphisms of nonabelian groups are never
automorphisms, the use of “inverse” in this context is perhaps not too perverse.)

Corollary 9. Let ψ be a fixed point free endomorphism of G, and define the regular
embedding β : G → Hol(G) by β(τ ) = λ(τ )ρ(ψ(τ )). If ψ has an inverse θ, then
the corresponding regular embedding α of G into Perm(G) is defined by α(σ) =
λ(σ)ρ(θ(σ)).

Proof. The maps b, c : G → G corresponding to ψ, θ are

b(σ) = σψ(σ−1)

and

c(τ ) = τθ(τ−1).
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If b and c are inverse bijections, then

α(σ)(τ ) = c(σb(τ ))

= c(στψ(τ−1))

= στψ(τ−1)θ((στψ(τ−1))−1)

= στψ(τ−1)θ(ψ(τ ))θ(τ−1)θ(σ−1).

Since θ and ψ are inverses, we have

θ(ψ(τ )) = ψ(τ )θ(τ ),

so

α(σ)(τ ) = στψ(τ−1)ψ(τ )θ(τ )θ(τ−1)θ(σ−1)

= στθ(σ−1)

= (λ(σ)ρ(θ(σ)))(τ ). �
If ψ is abelian, then Theorem 5 shows that the Hopf Galois action on a field

extension L|K corresponding to θ in Corollary 9 is via the Hopf algebra Hλ.

Remark 10. Fixed point free endomorphisms of abelian groups do not yield non-
trivial Hopf Galois structures. But we note that if G is abelian, written additively,
and ψ is a fixed point free endomorphism of G, then ψ always has an inverse. For
b = I − ψ is an automorphism of G. Let θ = I − b−1. Then θ is a fixed point free
endomorphism of G, and I = bb−1 implies that θψ = θ + ψ. Thus if G is abelian,
then every fixed point free endomorphism of G has an inverse.

5. Examples

Symmetric groups. In [CaC99] it was observed that for G = Sn, n ≥ 5, every
fixed point free endomorphism ofG is trivial on the alternating group An ⊂ Sn. (For
a nonabelian simple group there are no nontrivial fixed point free endomorphisms;
cf. [Go82, p. 55].) Hence every nontrivial fixed point free endomorphism induces
a homomorphism from Sn/An into Sn, so is abelian. For the endomorphism to be
fixed point free, the nontrivial coset must map to an even permutation of order 2.
Each such nontrivial fixed point free endomorphism of Sn yields a distinct action
of Hλ on a Galois extension L|K with Galois group Sn.

It is easy to see that each such endomorphism is its own inverse.

Examples involving abelian by cyclic semi-direct products. Let A be a
finite abelian group of order n, written additively, and let G = A� 〈β〉, where β in
Aut(A) has order d with (n, d) = 1. We assume that the center of G is trivial. It is
routine to see that the center of G is {z ∈ A : (β − 1)(z) = 0}. So the assumption
on the center is equivalent to the condition that β − 1 is injective on A.

We wish to define ψ, an endomorphism of G.
Since β has order prime to n, then for each f �= 0 in A, ψ(f, 1) = (g, 1) for some

g in A. Thus ψ restricts to an endomorphism of A that we also denote by ψ. Thus
ψ(f, 1) = (ψ(f), 1). Let ψ(0, β) = (h, βs).

Since (0, β)(f, 1) = (β(f), 1)(0, β) in G and ψ is an endomorphism,

(h, βs)(ψ(f), 1) = (ψ(β(f)), 1)(h, βs),

that is,
βs(ψ(f)) = ψ(β(f)).
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If s = 0, then h = 0 and ψ(f) = ψ(β(f)). Since β − 1 is injective on A, it follows
that ψ(A) = 0, and so ψ is trivial.

If s �= 0, then for ψ to be an endomorphism of G we must have

ψ(0, βd) = ((1 + βs + . . .+ βs(d−1))(h), βsd) = (0, 1).

This condition holds if and only if (1 + βs + . . .+ βs(d−1))(h) = 0. To insure that
condition holding, we restrict s so that βs − 1 is injective on A. Then

(βs − 1)(1 + βs + . . .+ βs(d−1))(h) = (βsd − 1)(h) = 0,

so ψ(0, βd) = (0, 1).
For ψ to be an abelian endomorphism, for all f in A,

ψ(0, β)ψ(f, 1) = ψ(f, 1)ψ(0, β),

that is,

(h, βs)(ψ(f), 1) = (ψ(f), 1)(h, βs);

hence βs(ψ(f)) = ψ(f). Since βsψ = ψβ, the abelian condition on ψ thus implies
that ψβ = ψ on A. Since β−1 is injective on A, ψ must be trivial on A. Conversely,
if ψ is trivial on A, then ψ is abelian.

So henceforth we assume that ψ is an abelian endomorphism of G as described
in the next proposition.

Proposition 11. Let G = A�〈β〉 as above, and let ψ be an abelian endomorphism
of G such that ψ(f, 1) = (0, 1) for all f in A and ψ(0, β) = (h, βs) for some h in
A, where s �= 0 and βs − 1 is injective on A. Then ψ is fixed point free on G iff
(s− 1, d) = 1.

Proof. We try to solve ψ(g, βt) = (g, βt). Since ψ(g) = 0, this is equivalent to

(h, βs)t = (g, βt),

which in turn is equivalent to βst = βt and

g = (1 + βs + β2s + . . .+ β(t−1)s)(h).

Suppose (s− 1, d) > 1. Then there exists some t �≡ 0 (mod d) so that βst = βt.
For such a t, we let

g = (1 + βs + β2s + . . .+ β(t−1)s)(h).

Then (g, βt) is a fixed point of ψ.
Suppose, on the other hand, that (s − 1, d) = 1. Then the only solution of

ψ(g, βt) = (g, βt) has t = 0, in which case ψ(g, 1) = (g, 1) iff g = 0. Thus ψ is fixed
point free. �

For these endomorphisms, we can find the inverse of ψ:

Proposition 12. Let G = A� 〈β〉, where β is an element of Aut(A) with βd = 1,
where (d, n) = 1. Let ψ : G → G be the abelian fixed point free endomorphism
with ψ(f, 1) = (0, 1) for f in A and ψ(0, β) = (h, βs) with βs − 1 injective on
A, and (s − 1, d) = 1. Define t by (s − 1)(t − 1) ≡ 1 (mod d), and g in A by
(βs − 1)(g) = (βt − 1)(h). Then θ : G → G, defined by θ(f, 1) = (0, 1) and
θ(0, β) = (g, βt), is an abelian fixed point free endomorphism of G and is the inverse
of ψ.
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Proof. We first observe that βt − 1 is injective. Since (s − 1)(t− 1) ≡ 1 (mod d),
βt(s−1) = βs, so if βt(g) = g for some nonzero g in A, then βs(g) = g. Thus if
βs − 1 is injective on A, so is βt − 1.

The argument that θ is an abelian, fixed point free endomorphism of G then
follows that for ψ, above.

The condition (βs − 1)(g) = (βt − 1)(h) implies easily that ψ(0, β) and θ(0, β)
commute.

To show that θ is the inverse of ψ, it suffices (since θ and ψ are both trivial on
A) to show that for all n,

θ(ψ(0, βn)) = ψ(0, βn)θ(0, βn).

Since θ and ψ are both endomorphisms and ψ(0, β) and θ(0, β) commute, it suffices
to show that

θψ(0, β) = ψ(0, β)θ(0, β).

This becomes

θ(h, βs) = (h, βs)(g, βt)

or

(g, βt)s = (h+ βs(g), βs+t)

or

(g + βtg + . . .+ βt(s−1)g, βts) = (h+ βs(g), βs+t).

Since (s− 1)(t− 1) ≡ 1 (mod d), we have βs+t = βst, so it suffices to check that

((1 + βt + . . .+ β(s−1)t)(g) = h+ βs(g).

Applying the injective map (βt − 1) to both sides yields

(βts − 1)(g) = (βt − 1)(h) + (βt − 1)βs(g)

or

((βts − 1)− (βs+t − βs))(g) = (βt − 1)(h),

which follows from the assumptions βs+t = βst and (βs−1)(g) = (βt−1)(h). Thus
θ is the inverse of ψ, as claimed. �

In case A is cyclic, the examples above specialize to those in [CCo07].

Dihedral groups. Let G = Dm, the dihedral group of order 2m. If m is odd, then
by Proposition 11 and the discussion preceding Proposition 11, G has no nontrivial
abelian fixed point free endomorphisms.

On the other hand, let G = D2m = 〈x, y〉, the dihedral group of order 4m,
with relations x2m = 1 = y2, yx = x−1y. Then the center of G is 〈xm〉, of order
2. One may verify that G has the following nontrivial abelian fixed point free
endomorphisms ψ : G → G:

(1) ψ(x) = 1, ψ(y) = xm;
(2) ψ(x) = xm, ψ(y) = xm if m is even;
(3) ψ(x) = xm, ψ(y) = 1 if m is even;
(4) ψi(x) = xiy, ψi(y) = 1 with i even;
(5) ψi(x) = xiy, ψi(y) = xm with i+m even;
(6) ψi(x) = xiy, ψi(y) = xiy with i odd;
(7) ψi(x) = xiy, ψi(y) = xi+my with i+m odd.
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Examples (1)-(3) are in Z, i.e. have image in the center of G.
There are 4m endomorphisms of types (4)-(7). If m is even, there are four

endomorphisms in Z; hence by Corollary 6 the number of Hopf Galois structures
on a Galois extension L|K with Galois group G = D2m induced by abelian fixed
point free endomorphisms of G is m + 1. If m is odd, #Z = 2, so the number of
Hopf Galois structures is 2m+ 1.

All of these endomorphisms are their own inverses except for the endomorphisms
of types (5) and (7). If m is even, then the inverse of ψi of type (5) (resp. of type
(7)) is ψm+i of type (5) (resp. of type (7)); if m is odd, then the inverse of ψi of
type (5) is ψm+i of type (7).
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