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GENERALIZATION OF ATKIN’S ORTHOGONAL

POLYNOMIALS AND SUPERSINGULAR ELLIPTIC CURVES

YING-YING TRAN

(Communicated by Matthew A. Papanikolas)

Abstract. In a 1998 paper, Kaneko and Zagier explain unpublished work of
Atkin which exhibits an infinite sequence of polynomials with the property
that when suitable polynomials are reduced mod p for a prime p, one gets the
locus of supersingular elliptic curves. Here we generalize this phenomenon by
considering the continued fraction expansions of modular and quasimodular
forms.

1. Introduction and statement of results

An elliptic curve E over a field K of characteristic p > 0 is called supersingular
if the group E(K) has no p-torsion, where K is the algebraic closure of K. This
condition depends only on the j-invariant of E and there are only finitely many
supersingular j-invariants in Fp. We are interested in the polynomial

Sp(j) :=
∏

E/Fp,
E supersingular

(j − j(E)) ∈ Fp[j].

The first few supersingular polynomials are:

S5(j) = j,

S7(j) = j + 1,

S11(j) = j(j + 10),(1)

...

S37(j) = (j + 29)(j2 + 31j + 31).

Atkin defines a sequence of monic polynomials An(j) ∈ Q[j], with degAn(j) = n,
as the orthogonal polynomials with respect to a special scalar product and shows
that if np is the degree of Sp, then Sp(j) ≡ Anp

(j) mod p. The first few Atkin
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polynomials are:

A0(j) = 1,

A1(j) = j − 720,

A2(j) = j2 − 1640j + 269280,(2)

A3(j) = j3 − 12576

5
j2 + 1526958j − 107765856,

A4(j) = j4 − 3384j3 + 3528552j2 − 1133263680j + 44184000960.

Atkin’s observation is illustrated by the following examples:

A2(j) ≡ j2 + 13j + 12 = (j + 1)(j + 12) mod 19,

A3(j) ≡ j3 + j2 + 11j = j(j + 4)(j + 20) mod 23,

A3(j) ≡ j3 + 2j2 + 21j = j(j + 4)(j + 27) mod 29.

Kaneko and Zagier [2] interpret this result using the theory of continued fractions
and convergents for power series, applying this theory to a particular quasimodular
form

Φ :=
E2E4

E6j
,

where Ek is the weight k Eisenstein series and j is the usual modular invariant,
recalled in Section 2. Kaneko and Zagier then show that the Atkin polynomials are
the denominators of the convergents of Φ, and thus Sp is the denominator of the
npth convergent of Φ.

Here we generalize Kaneko and Zagier’s results. Rather than consider Φ =
E2E4

E6j
, we will consider more general modular and quasimodular forms. To present

cleaner results, instead of searching for Sp, we will consider S∗
p , where S∗

p is the
supersingular locus away from 0 and 1728.

Table 1

Ẽp−1 Ẽp+1 j − 1728 j n∗(a, b, c, d, p)

e < 0

a ≤ 0

a+ c ≤ (a+ e)ε
2a+ b+ 3d ≤ 3 + (2a+ e)δ 1− em

2a+ b+ 3d > 3 + (2a+ e)δ 2
3
(1− δ)a+ b

3
+ d− (m+ δ

3
)e

a+ c > (a+ e)ε
2a+ b+ 3d ≤ 3 + (2a+ e)δ 1− em+ a

2
+ c

2
− ε

2
(a+ e)

2a+ b+ 3d > 3 + (2a+ e)δ −a(m+ δ + ε− 1)

a > 0

a+ c ≤ (a+ e)ε
2a+ b+ 3d ≤ 3 + (2a+ e)δ 1− em+ a(m+ δ + ε− 1)

2a+ b+ 3d > 3 + (2a+ e)δ − a
2
− c

2
+ ε

2
(a+ e)

a+ c > (a+ e)ε
2a+ b+ 3d ≤ 3 + (2a+ e)δ − 2

3
(1− δ)a− b

3
− d+ δe

3
+ 1

2a+ b+ 3d > 3 + (2a+ e)δ �

e > 0

a ≥ 0

a+ c ≥ (a+ e)ε
2a+ b+ 3d ≥ 3 + (2a+ e)δ em

2a+ b+ 3d < 3 + (2a+ e)δ em− 2
3
(1− δ)a− b

3
− d+ δe

3
+ 1

a+ c < (a+ e)ε
2a+ b+ 3d ≥ 3 + (2a+ e)δ a

2
(ε− 1)− c

2
+ (m+ ε

2
)e

2a+ b+ 3d < 3 + (2a+ e)δ 1 + a(m+ δ + ε− 1)

a < 0

a+ c ≥ (a+ e)ε
2a+ b+ 3d ≥ 3 + (2a+ e)δ em− a(m+ δ + ε− 1)

2a+ b+ 3d < 3 + (2a+ e)δ 1 + a
2
(1− ε) + c

2
− εe

2

a+ c < (a+ e)ε
2a+ b+ 3d ≥ 3 + (2a+ e)δ 2

3
(1− δ)a+ b

3
+ d− eδ

3

2a+ b+ 3d < 3 + (2a+ e)δ �
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Theorem 1. If Φ = Ea
2E

b
4E

c
6Δ

d, then let w(Φ) := 2a + 4b + 6c + 12d. Let p ≥ 5

be a prime such that p − 1 divides w(Φ), and define e := a + w(Φ)
p−1 . If e �= 0, then

for some integer n∗(a, b, c, d, p) defined in Table 1, (S∗
p)

e (resp. (S∗
p)

−e) divides

the denominator (resp. numerator) of the (n∗(a, b, c, d, p))th convergent of Φjd−1 if
e > 0 (resp. if e < 0).

In the rows with �, our proof does not give a convergent, for reasons discussed
in the proof.

Remark. When w(Φ) = 0, p− 1 divides w(Φ) for every prime p, with e = a. Thus,
if w(Φ) = 0, then for every prime p, Sp divides the numerator or denominator of

some convergent. Kaneko and Zagier’s Φ := E2E4

E6j
falls in this particular category.

2. Preliminaries

2.1. Modular forms. For k even and positive, let Bk be the kth Bernoulli number,
and let Ek(τ ) be the kth Eisenstein series

Ek(τ ) = 1− 2k

Bk

∞∑
n=1

(∑
d|n

dk−1

)
qn (q = e2πiτ ).

Ek is a modular form of weight k for k ≥ 4 and for k = 2 is “nearly modular” or
quasimodular:

E2(
aτ + b

cτ + d
) = (cτ + d)2E2(τ ) +

6

πi
c(cτ + d)

((
a b
c d

)
∈ Γ

)
,

where Γ = PSL(2,Z). In addition, let

Δ(τ ) :=
E4(τ )

3 − E6(τ )
2

1728
= q

∞∏
n=1

(1− qn)24 ∈ M12

and

j(τ ) :=
E4(τ )

3

Δ(τ )
,

where Mk is the space of modular forms of weight k on Γ for even k > 2. It is easy
to see that

j(τ )− 1728 =
E6(τ )

2

Δ(τ )
.

For any even integer k > 2, we can express k uniquely in the form

(3) k = 12m+ 4δ + 6ε with m ∈ Z≥0, δ ∈ {0, 1, 2}, ε ∈ {0, 1}.
In fact, if k + 1 = p is a prime, then m, δ, and ε are given explicitly by

(4) m =

⌊
p

12

⌋
, δ =

{
0 if p ≡ 1 mod 3,

1 if p ≡ 2 mod 3,
ε =

{
0 if p ≡ 1 mod 4,

1 if p ≡ 3 mod 4.

Then dim Mk = m+1 and any modular form in Mk can be written uniquely as

(5) f(τ ) = Δ(τ )mE4(τ )
δE6(τ )

εf̃(j(τ ))

for some polynomial f̃ of degree ≤ m in j(τ ), the coefficient of jm in f̃ being equal
to the constant term of the Fourier expansion of f . In particular, for primes p ≥ 5
with δ and ε as defined in equation (4),

(6) Sp(j) ≡ jδ(j − 1728)εẼp−1 mod p,
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a result apparently first noticed by Deligne (cf. [4]). We will concentrate our interest

on the supersingular locus away from 0 and 1728; i.e. S∗
p(j) = Ẽp−1.

2.2. Orthogonal polynomials, continued fractions, and convergents. Let
V be the vector space of single-variable polynomials over R and ( , ) a scalar

product on V of the form (f, g) = φ(fg), where φ(f) =
∫ b

a
f(X)v(X)dX for some

real numbers a < b and some positive function v on (a, b). Applying the Gram-
Schmidt process to {Xn}n≥0 (which is a basis of V ), we obtain a unique basis of
orthogonal monic polynomials Pn by the recursion

Pn(X) = Xn −
n−1∑
m=0

(Xn, Pm)

(Pm, Pm)
Pm(X),

as long as (Pn, Pn) �= 0 for all n, which is true, since (f, f) > 0 for all f �= 0. Let
gn = (Xn, 1) = φ(Xn). Then Pn(X) satisfy the recursion

(7) P0 = 0, P1 = g0, Pn+1 = (x− an)Pn − bnPn−1,

for some constants an, bn ∈ R, where bn = (Pn,Pn)
(Pn−1,Pn−1)

�= 0. Further, define the

polynomials Qn(X) recursively as

(8) Q0 = 1, Q1 = x− g1/g0, Qn+1 = (x− an)Qn − bnQn−1.

Then

(9)
Pn(X)

Qn(X)
= Φ(X) +O(X−2n−1) ∈ R[[X−1]],

where Φ(X) :=
∑∞

n=0 gnX
−n−1 ∈ R[[X−1]]. Define λn ∈ R (n ≥ 1) by the contin-

ued fraction expansion

g0 + g1x+ g2x
2 + · · · =

g0

1−
λ1x

1−
λ2x

1− . . .

∈ R[[x]].

Then λn �= 0 and an = λ2n + λ2n+1, bn = λ2n−1λ2n for n ≥ 1.
It is not hard to see that if bn �= 0, then gcd(Pn, Qn) = 1, which implies that if

A(X) and B(X) are polynomials such that

A(X)

B(X)
= Φ(X) +O(X−2n−1)

and degB ≤ degQn, then B is a constant multiple of Qn. Therefore, Pn/Qn is the
best possible approximation for the degree of the denominator (cf. [1], [2]).

3. Proof of the main theorem

We will first prove a technical proposition about quasimodular forms. Through-
out p ≥ 5 is prime. Recall that the degree of a rational function P (x) = f(x)/g(x),
where f and g are polynomials, is

degP = deg f − deg g.
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3.1. A technical proposition.

Proposition 2. Given Φ = Ea
2E

b
4E

c
6Δ

d, let w(Φ) and e be as in Theorem 1. If
p − 1 divides w(Φ), then Φ is a rational function in j modulo p of degree −d. In
fact,

(10) Φ ≡ j
1
3 (2a−2aδ+b−eδ)(j − 1728)

1
2 (a−aε+c−eε)Ẽ−e

p−1Ẽ
a
p+1 mod p,

where δ and ε are those corresponding to k = p− 1 as defined in (4).

Proof. If p ≥ 5 is a prime, then we know that Ep−1 ≡ 1 mod p and Ep+1 ≡ E2

mod p. Thus we have

Φ = Ea
2E

b
4E

c
6Δ

d ≡ Ea
p+1E

b
4E

c
6Δ

dE−e
p−1 mod p,

where e = a + w(Φ)
p−1 . Then Φ has weight 0, which implies that Φ is a rational

function in j modulo p.
Define m, δ, and ε as the numbers defined by (4) with k = p − 1. Then the

corresponding numbers for k = p + 1 are m + δ + ε − 1, 2(1 − δ), and 1 − ε
respectively. Equation (5) for Ep−1 and Ep+1 then becomes

Ep−1 = ΔmEδ
4E

ε
6Ẽp−1, Ep+1 = Δm+δ+ε−1E2−2δ

4 E1−ε
6 Ẽp+1,

so

Φ ≡ Δam+aδ+aε−a+d−emE2a−2aδ+b−eδ
4 Ea−aε+c−eε

6 Ẽa
p+1Ẽ

−e
p−1 mod p.

Φ is a rational function in j, and Ẽp+1 and Sp are polynomials in j, so

F := Δam+aδ+aε−a+d−emE2a−2aδ+b−eδ
4 Ea−aε+c−eε

6

is a rational function in j and a weight 0 modular form. Because F is weight 0,
then

4(2a− 2aδ + b− eδ) + 6(a− aε+ c− eε) = 12(a− anp − d+ em),

which implies that 3 divides 2a−2aδ+b−eδ and 2 divides a−aε+c−eε. Therefore,

F = j
1
3 (2a−2aδ+b−eδ)(j − 1728)

1
2 (a−aε+c−eε)

and

Φ ≡ j
1
3 (2a−2aδ+b−eδ)(j − 1728)

1
2 (a−aε+c−eε)Ẽ−e

p−1Ẽ
a
p+1 mod p.

Furthermore, Ẽp−1 and Ẽp+1 have degree m and m+δ+ε−1 = np−1 respectively,
so Φ has degree −d. �

3.2. Proof of the main theorem. Drawing together the results from convergents,
some identities of modular forms, and the previous proposition, we are ready to
prove Theorem 1.

Proof. From Proposition 2 we know that Φ is a rational function in j of degree −d.
Thus, let us consider Φjd−1 which has degree −1 in j. From (10),

Φjd−1 = j
1
3 (2a−2aδ+b+3d−eδ−3)(j − 1728)

1
2 (a−aε+c−eε)Ẽ−e

p−1Ẽ
a
p+1 mod p.

Because Φjd−1 is a rational function, it can be expressed as the quotient of two poly-
nomials. Furthermore, induction easily shows that every convergent has degree −1,
as does Φjd−1. Then Φjd−1 is a perfect, and hence a best possible, approximation
to itself, so Φjd−1 must equal its convergents once the degree of the denominator
of the convergent agrees with that of the denominator of Φjd−1.
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Thus, if we can prove that the appropriate power of S∗
p divides the numerator (or

denominator) of Φjd−1, then indeed the appropriate power of S∗
p must also divide

the numerator (or denominator) of the n∗th convergent of Φjd−1, where n∗ is the

degree of the denominator of Φjd−1. More specifically, S∗
p = Ẽp−1, so we need only

to seek appearances of Ẽp−1.
We break this down into cases, corresponding to the signs of the exponents.

If e < 0, then Ẽp−1 (and hence S∗
p) is in the numerator. If everything else is

in the denominator, i.e. 2a − 2aδ + b + 3d − eδ − 3 ≤ 0, a − aε + c − eε ≤ 0,
and a ≤ 0, then the degree of the numerator is −em and n∗ = 1 − em. If only
the exponents of j and Ẽp−1 are positive, then the degree of the numerator is
−em+ 1

3 (2a−2aδ+b+3d−eδ−3) and n∗ = 1−em+ 1
3 (2a−2aδ+b+3d−eδ−3).

If the exponents of Ẽp−1, j, and j − 1728 are positive but the exponent of Ẽp+1

is zero or negative, then it is easier to compute the degree of the denominator. The
degree of Ẽp+1 is m + δ + ε − 1, which gives the degree of the denominator to be
−a(m+ δ+ ε− 1), and hence n∗ = −a(m+ δ+ ε− 1). The rest of the cases follow
in similar fashion.

If e > 0, then Ẽp−1, and hence S∗
p , is in the denominator, and as before, we can

compute the degree of the denominator or numerator to find the desired n∗.
Now all that remains is to address those cases indicated in the table with �. In

those cases, all the exponents are of the same sign (and nonzero), meaning that the
numerator or the denominator is 1. Recall that Φjd−1 is of degree −1. Immediately,
we can rule out the case of the denominator being 1. If the numerator is 1, then
the denominator must be of degree 1, but the exponents are nonzero, which forces
the denominator to be of degree at least 3. Thus, we reach a contradiction, which
indicates that those cases cannot be attained. �

4. Examples

In this section, we will consider various quasimodular forms Φjd−1 and appro-
priate primes p to cover some of the cases in Theorem 1.

Example. Let Φ =
E2E

4
4Δ

3j2

E3
6

and p = 37. Then

Φ ≡ j4Ẽ38

(j − 1728)Ẽ2
36

mod 37,

and the denominator of the seventh convergent is congruent to

(j2 + 31j + 31)2(j + 29)2(j + 11) = (S∗
37)

2(j + 11) = S2
37(j + 11).

Example. Let Φ = E2
2E4E

2
6Δ and p = 17. Then

Φ ≡ (j − 1728)2Ẽ2
18

jẼ4
16

mod 17,

and the denominator of the fifth convergent is congruent to

j(j + 9)4 = (S∗
17)

4j = S17(j + 9)3.

Example. Let Φ = Δ8j7

E5
2E

8
4E

2
6
and p = 43. Then

Φ ≡ j(j − 1728)Ẽ4
42

Ẽ5
44

mod 43,
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and the numerator of the fifteenth convergent is congruent to

(j + 2)4(j2 + 19j + 16)4j(j + 35) = (S∗
43)

4j(j + 35) = S43(j + 2)3(j2 + 19j + 16)3j.

Example. Let Φ =
E2

4E6Δ

E2
2

and p = 23. Then

Φ ≡ j(j − 1728)Ẽ22

Ẽ2
24

mod 23,

and the numerator of the fourth convergent is congruent to

j(j + 20)(j + 4) = S∗
23j(j + 20) = S23.
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