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A NOTE ON THE CONVERGENCE TO INITIAL DATA

OF HEAT AND POISSON EQUATIONS

SILVIA I. HARTZSTEIN, JOSÉ L. TORREA, AND BEATRIZ E. VIVIANI

(Communicated by Richard Rochberg)

Abstract. We characterize the weighted Lebesgue spaces, Lp(Rn, v(x)dx),
for which the solutions of the Heat and Poisson problems have limits a.e. when
the time t tends to zero.

1. Introduction

Consider the following classical problems in the upper half-plane,

(A)

⎧⎨
⎩

∂u
∂t (x, t) = Δxu(x, t)

u(x, 0) = f(x),

(B)

⎧⎪⎨
⎪⎩

∂2w
∂t2 (x, t) = −Δxw(x, t)

w(x, 0) = g(x),

x ∈ Rn, t > 0.

It is well known that under mild size conditions of the initial data f and g, for
example f, g ∈ Lp(Rn, dx), 1 ≤ p < ∞, the following limits hold:

(1.1) lim
t→0

u(x, t) = f(x), lim
t→0

w(x, t) = g(x), for almost every x.

The aim of this paper is to obtain optimal weighted Lebesgue spaces Lp(Rn,
v(x)dx), 1 ≤ p < ∞, for which the limits in (1.1) still hold.

We find two classesDW
p andDP

p (see Definition 2.2) of weights v (strictly positive
and finite functions for almost all x) such that

(1.2)
u(x, t) is a solution of (A) for t ∈ (0, T ] and lim

t→0
u(x, t) = f(x) a.e. x

for all f ∈ Lp(Rn, v(x)dx) if and only if v ∈ DW
p ,

and

(1.3)
w(x, t) is a solution of (B) for t ∈ (0, T ] and lim

t→0
w(x, t) = g(x) a.e. x

for all g ∈ Lp(Rn, v(x)dx) if and only if v ∈ DP
p .
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These two statements are included in Theorem 2.3, which states the existence of
optimal spaces Lp(Rn, v(x)dx) adapted to either statement (1.2) or statement (1.3).

Throughout this note the wording “weighted inequality” for an operator T means
to find conditions on a given weight v in order to assure the existence of a weight
u for which T maps Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx).

Theorem 2.3 involves some weighted inequalities for local maximal operators
associated to Problems (A) and (B), namely, supt<R |u(x, t)| and supt<R |w(x, t)|,
respectively. Even more, the finitude almost everywhere of each of these maximal
operators is equivalent to the almost everywhere convergence stated either in (1.2)
or (1.3).

These weighted inequalities are proved in this work by using some ideas due
to E. Harboure, R.A. Maćıas and C. Segovia (see [7]) and also some ideas due
to J.L. Rubio de Francia (see [9]). In proving them we shall need some weighted
inequalities for the local Hardy-Littlewood maximal operator that we believe are of
independent interest (see Lemma 3.4). For the (global) Hardy-Littlewood maximal
function, some classes of weights for the weighted inequalities were obtained by
L. Carleson and P. Jones, [1], Rubio de Francia, [9] and A. Gatto and C. Gutiérrez,
[5], independently. These results are shown in Theorem 3.2.

Finally in Theorem 2.6 we compare all the classes of weights that appear in this
note.

It is worth mentioning that the characterization of the weights v such that the
Hardy-Littlewood maximal function maps Lp(Rn, v(x)dx), 1 < p < ∞, and the
weak (1, 1) boundedness, was done by B. Muckenhoupt in the celebrated paper [8].
The problem of characterization of the pairs (u, v) for which the Hardy-Littlewood
function maps Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx) was solved by E. Sawyer in [11].
Finally we mention that the problem was solved in [7] for the case of fractional
integrals. The case of Poisson integrals in light-cones was considered in [2].

2. Preliminaries and main results

The solutions to problems (A) and (B) can be described via the Heat and Pois-
son semigroups. In fact, if the functions f and g belong to the Lebesgue space
Lp(Rn, dx), it is well known that the solutions of those problems are

(2.4) u(x, t) =
1

(4πt)
n
2

∫
Rn

e−
|x−y|2

4t f(y)dy = Wt ∗ f(x), t > 0,

and

(2.5) w(x, t) =
Γ(n+1

2 )

π
n+1
2

∫
Rn

t

(t2 + |x− y|2)n+1
2

g(y)dy = Pt ∗ g(x), t > 0,

where W (x) = (4π)−
n
2 e−

|x|2
4 , Wt(x) = t−

n
2 W (t−

1
2 x), P (x) =

Γ(n+1
2 )

π
n+1
2

(1 + |x|2)−n+1
2

and Pt(x) = t−nP (t−1x). Moreover, the maximal operators

f → sup
t>0

u(·, t) and g → sup
t>0

w(·, t)

are bounded on Lp(Rn, dx), p > 1 and from L1(Rn, dx) into weak-L1(Rn, dx).
It is well known that the convolution maximal operator controls pointwise (a.e.)

convergence and it is implicit in the “standard” argument that the maximal op-
erator can be replaced by a local version; see [3]. This reflection shows that any
weight v for which the maximal operators supt>0 |u(x, t)| or supt>0 |w(x, t)| have
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good boundedness properties would be a good weight for our problem. Even more,
in order to have the limits in (1.1) it is not necessary to consider the global max-
imal operators supt>0 |u(x, t)| or supt>0 |w(x, t)| but only local versions of them.
Namely

W ∗
Rf(x) := sup

t<R
|u(x, t)| = sup

t<R
|Wt ∗ f(x)|

and
P ∗
Rg(x) := sup

t<R
|w(x, t)| = sup

t<R
|Pt ∗ g(x)|,

for some R > 0.
The first question we consider is about boundedness properties of the operators

Wt ∗ f(x) and Pt ∗ f(x). The following proposition gives the answer.

Proposition 2.1. Let v be a weight in Rn, 1 ≤ p < ∞ and let {φt}t be either the
Heat, {Wt}t, or the Poisson, {Pt}t, semigroup (see (2.4) and (2.5)).

The following statements are equivalent:

(a) There exists t0 > 0 and a weight u such that the operator f → φt0 ∗ f maps
Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx), for p > 1.

In the case p = 1, it maps L1(Rn, v(x)dx) into weak-L1(Rn, u(x)dx).
(b) There exists t0 > 0 and a weight u such that the operator f → φt0 ∗ f maps

Lp(Rn, v(x)dx) into weak-Lp(Rn, u(x)dx).
(c) There exists t0 > 0 such that φt0 ∗ f(x) < ∞ a.e. x (with respect to the

Lebesgue measure) for all f ∈ Lp(Rn, v(x)dx).
(d) There exists t0 > 0 such that

‖φt0v
− 1

p ‖Lp′ (Rn,dx) < ∞.

Motivated by the above proposition we give the following definition.

Definition 2.2. Let 1 ≤ p < ∞ and {φt}t>0 be the Heat, {Wt}t>0 (respectively
Poisson, {Pt}t>0) semigroup.

We say that the weight v belongs to the class DW
p (respectively DP

p ) if there
exists t0 > 0 such that

‖φt0v
− 1

p ‖Lp′ (Rn,dx) < ∞.

The main result in this note is the following.

Theorem 2.3. Let v be a weight in Rn, 1 ≤ p < ∞, and {φt}t be either the Heat,
{Wt}t, or the Poisson, {Pt}t, semigroup. Define

Φ∗
Rf(x) = sup

t<R
|φt ∗ f(x)|,

for some R, 0 < R < ∞.
The following statements are equivalent:

(1) There exists 0 < R < ∞ and a weight u such that the operator

f → Φ∗
Rf

maps Lp(Rn, v(x)dx) into Lp(Rn, u(x)dx) for p > 1. In the case p = 1, it
maps L1(Rn, v(x)dx) into weak-L1(Rn, u(x)dx).

(2) There exists 0 < R < ∞ and a weight u such that the operator

f → Φ∗
Rf

maps Lp(Rn, v(x)dx) into weak-Lp(Rn, u(x)dx).
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(3) There exists 0 < R < ∞ such that φR ∗ f(x) < ∞ a.e. x and the limit

lim
t→0

φt ∗ f(x)

exists a.e. x for all f ∈ Lp(Rn, v(x)dx).
(4) There exists 0 < R < ∞ such that

Φ∗
Rf(x) < ∞,

a.e. x, for all f ∈ Lp(Rn, v(x)dx).
(5) The weight

v ∈ Dφ
p

(see Definition 2.2).

Remark 2.4. The motivation of the last theorem comes from Problems (A) and (B)
in the introduction. An obvious academic question would be to determine a general
class of functions φ such that Theorem 2.3 is valid for {φt}t. We could write here a
list of conditions for that validity. But we think it would be just a list of conditions,
that the interested reader can easily find following our proofs.

Throughout this paper more classes of weights will appear, motivating the fol-
lowing definitions.

Definition 2.5. Let 1 < p < ∞. We say that the weight

• v belongs to the class D∗
p if v satisfies (II) in Theorem 3.2;

• v belongs to the class Dloc
p if v−

p′
p ∈ L1

loc(R
n, dx) (that is, v−

1
p ∈

Lp′

loc(R
n, dx)).

In the case p = 1 we say that the weight

• v belongs to the class D∗
1 if v satisfies supR>1 ‖ 1

Rn v
−1(·)‖L∞(B(0,R)) ≤ C;

• v belongs to the class Dloc
1 if v−1 ∈ L∞

loc(R
n, dx) (that is, v is locally

bounded from below).

The relationship among the classes of weights in Definitions 2.2 and 2.5 is given
by the next theorem.

Theorem 2.6. The chain of inclusions

D∗
p � DP

p � DW
p � Dloc

p

holds for 1 ≤ p < ∞.

3. Proofs

We need the following lemma to prove Proposition 2.1.

Lemma 3.1. Let v be a weight in Rn, 1 ≤ p < ∞, and {φt}t be either the Heat or
the Poisson semigroup.

The following statements are equivalent:

(i) The weight

v ∈ Dφ
p .

(ii) There exists t1 > 0 such that

‖φt1(x− ·)v− 1
p (·)‖Lp′ (Rn) < ∞

for all x ∈ Rn.
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Proof of Lemma 3.1. Assume that {φt} is the Heat semigroup and v ∈ Dφ
p . There

exist t0 > 0 and a positive constant C0 such that C0 = ‖φt0 v
− 1

p ‖Lp′ (Rn,dx) < ∞;

in particular, v−
1
p ∈ Lp′

loc.
Given x we consider the ball Bx = {y : |x− y| ≤ |x|}; hence for t > 0 we have

‖φt(x− ·)v− 1
p (·)‖Lp′ (Rn,dy)

≤ ‖ χBx
(·)φt(x− ·)v− 1

p (·)‖Lp′ (Rn,dy) + ‖ χBc
x
(·)φt(x− ·)v− 1

p (·)‖Lp′ (Rn,dy).

If |x− y| ≤ |x|, then |y| ≤ |x− y|+ |x| ≤ 2|x|; hence

e−
1
4t |x−y|2 ≤ 1 ≤ e

1
4t |x|

2

e−
1
4t |x|

2 ≤ e
1
4t |x|

2

e−
1
4t (

|y|
2 )2 .

If, on the other hand, |x− y| > |x|, then |y| ≤ |x− y|+ |x| < 2|x− y|; thus

e−
1
4t |x−y|2 ≤ e−

1
4t (

|y|
2 )2 .

Choosing t1 = t0/4, we get the result.
The proof in the case of the Poisson semigroup is analogous. �

Proof of Proposition 2.1. Clearly (a) implies (b) and this implies (c).
Now assume that (c) holds. Let {φt} be the Heat kernel. Hence, for any positive

function f ∈ Lp(Rn, v(x)dx), φt0 ∗ f(x) < ∞ for almost every x ∈ Rn. Let x0 ∈ Rn

be such that φt0 ∗f(x0) < ∞. We will first show that φ t0
4
∗f(x) < ∞ for all x ∈ Rn.

Indeed, assume first that x �= x0.
If |x− y| ≤ |x− x0|, then |y − x0| ≤ 2|x− x0| and we have

φ t0
4
(x− y) ≤ C

1

t
n/2
0

≤ C
1

t
n/2
0

φt0(x0 − y)

φt0(2(x− x0))
= Cxφt0(x0 − y).

If |x− y| ≥ |x− x0|, then |x0 − y| ≤ 2|x− y|. Hence,

(3.6) φ t0
4
(x− y) ≤ φ t0

4
(
x0 − y

2
) = 4n/2φt0(x0 − y).

From both of the above inequalities it follows that∫
Rn

φ t0
4
(x− y)f(y)dy ≤(Cx + 4n/2)(

∫
|x−y|<|x−x0|

+

∫
|x−y|≥|x−x0|

)φt0(x0 − y)f(y)dy

< ∞,

for all x ∈ Rn \ {x0}.
Assuming now that x = x0, then (3.6) still holds and

0 ≤
∫
Rn

φ t0
4
(x0 − y)f(y)dy ≤ 4n/2

∫
Rn

φt0(x0 − y)f(y)dy < ∞.

Therefore the functional

f →
∫
Rn

φ t0
4
(x− y)f(y)dy =

∫
Rn

φ t0
4
(x− y)v−1/p(y)f(y)v1/p(y)dy

is well defined for all f ∈ Lp(Rn, v(x)dx) and for every x ∈ Rn. By duality the
mapping

y → φ t0
4
(x− y)v−1/p(y)

belongs to Lp′
(Rn, dx) for almost every x ∈ Rn, thus obtaining (d) for t1 = t0

4 .
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Finally if (d) holds, then by Hölder’s inequality we get that∫
|φt ∗ f(x)|pu(x)dx ≤

∫
|f(y)|pv(y) dy

∫
‖φt(x− ·)v− 1

p (·)‖p
Lp′ (Rn,dy)

u(x)dx.

Applying Lemma 3.1 there exists t0 > 0 such that

ψ(x) = ‖φt0(x− ·)v− 1
p (·)‖p

Lp′ (Rn,dy)

is finite for all x. Then it is enough to choose u ∈ L1
loc such that ψ u ∈ L1 to obtain

(a). This concludes the proof of Proposition 2.1. �

If φ is a positive, radial, decreasing and integrable function, the maximal operator
Φ∗f(x) = supt φt ∗ f(x) is bounded by a constant times the Hardy-Littlewood
maximal operator

Mf(x) = sup
r>0

1

rn

∫
B(x,r)

|f(y)|dy.

Since W and P are positive, radial, decreasing and integrable functions, any good
weight for the operator M would be good for our purposes.

Seeking good weights for the operator M we recall some results going back to
the 80’s, due independently to J.L. Rubio de Francia [9] and to L. Carleson and
P. Jones [1].

Theorem 3.2. Let v be a weight in Rn and 1 < p < ∞.
The following statements are equivalent:

(I) There exists a weight u such that the Hardy-Littlewood maximal operator
M is bounded from Lp(Rn, v(x)dx) to Lp(Rn, u(x)dx).

(II) There exists a constant C such that

sup
R>1

1

Rn p′

∫
B(0,R)

v−
p′
p (y)dy ≤ C,

i.e. v ∈ D∗
p (see Definition 2.5).

Remark 3.3. Statement II in Theorem 3.2 can be replaced by
(II′) For any a > 0, there exists a constant Ca such that

sup
R>a

1

Rn p′

∫
B(0,R)

v−
p′
p (y)dy ≤ Ca.

To see this claim, we observe that if a < 1 and a < S < 1, then

1

Sn p′

∫
B(0,S)

v−
p′
p (y)dy ≤ 1

anp′

∫
B(0,1)

v−
p′
p (y)dy

≤ 1

anp′ sup
R>1

1

Rn p′

∫
B(0,R)

v−
p′
p (y)dy.

Even more, statement II can be replaced by
(II′′) For any x ∈ Rn, and any a > 0, there exists a constant Ca,x such that

sup
R>a

1

Rn p′

∫
B(x,R)

v−
p′
p (y)dy ≤ Cx,a.
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In order to prove this claim, we observe that

1

Rn p′

∫
B(x,R)

v−
p′
p (y)dy ≤ 1

Rn p′

∫
B(0,|x|+R)

v−
p′
p (y)dy

≤ (|x|+R)n p′

Rn p′
1

(|x|+R)n p′

∫
B(0,|x|+R)

v−
p′
p (y)dy.

Then, we use (II′). �
We remark that condition v ∈ D∗

1 can be replaced by the following condition:
For any x ∈ Rn, and for any a > 0, there exists a constant Ca,x such that

sup
R>a

∥∥∥ 1

Rn
v−1(·)χB(x,R)(·)

∥∥∥
L∞

≤ Cx,a.

Proof of Theorem 2.6. Given t > 0,

Pt(x− y) = Cn
1

tn
(
1 + |x−y|2

t2

)n+1
2

≤ Cn

( 1

tn
χ{|x−y|<t}(y) +

∞∑
j=0

1

tn(2j)n+1
χ{2j t<|x−y|<2j+1 t}(y)

)

≤ Cn

( 1

tn
χ{|x−y|<t}(y) +

∞∑
j=0

2−j 1

(2j+1 t)n
χ{|x−y|<2j+1 t}(y)

)
.

Thus,

‖Pt(x− ·)v− 1
p (·)‖Lp′ (Rn,dx) ≤ C sup

R≥t

1

Rn
‖χB(x,R)(·)v−1/p(·)‖Lp′ (Rn,dx).

From Remark 3.3 it follows that D∗
p ⊂ DP

p .

Since Wt2(x) ≤ CPt(x), then DP
p ⊂ DW

p .

The following chain of inequalities proves DW
p ⊂ Dloc

p :

χ{|x−y|<R1/2}(y)v
− 1

p (y) ≤ Cχ{|x−y|<R1/2}(y)e
− |x−y|2

R v−
1
p (y) ≤ Ce−

|x−y|2
R v−

1
p (y).

To finish the proof of Theorem 2.6 it remains to show that each class is strictly
included in the bigger class. We leave it to the reader to check the following
assertions:

(a) The weight v1(x) = e−|x|3p belongs to Dloc
p , but v1 /∈ DW

p .

(b) The weight v2(x) = |x|−(n+1+ε) p, ε > 0, belongs to DW
p , but v2 /∈ DP

p .

(c) The weight v3(x) = |x|−(n+ε)p+n p
p′ with 0 < ε < 1 belongs to DP

p , but
v3 /∈ D∗

p.

This concludes the proof of Theorem 2.6. �
In order to prove Theorem 2.3 we need a technical result about the local Hardy-

Littlewood maximal function. Given R > 0 the local Hardy-Littlewood maximal
function MRf is defined by

MRf(x) = sup
0<s≤R

Asf(x),

where Asf(x) =
1
sn

∫
|x−y|<s

f(y)dy. �
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Lemma 3.4. Let v be a weight in Rn. Let 1 ≤ p < ∞ and R > 0 be fixed.
The following statements are equivalent:

(i) There exists a weight u such that MR is bounded from Lp(Rn, v(x)dx) to
Lp(Rn, u(x)dx), for p>1, and from L1(Rn,v(x)dx) to weak-L1(Rn,u(x)dx),
for p = 1.

(ii) There exists a weight u such that MR is bounded from Lp(Rn, v(x)dx) to
weak-Lp(Rn, u(x)dx).

(iii) There exists a weight u such that AR is bounded from Lp(Rn, v(x)dx) to
weak-Lp(Rn, u(x)dx).

(iv) v−
1
p ∈ Lp′

loc, for p > 1, and v−1 ∈ L∞
loc, for p = 1 (that is, v is locally

bounded from below); i.e., v ∈ Dloc
p (see Definition 2.5).

To prove the above lemma we need the following technical lemma due to J.L.
Rubio de Francia in [9]. It can be found in the form we need in [4].

Lemma 3.5. Let (X,μ) be a measurable space, B a Banach space and T a sublinear
operator from T : B → Ls(X), for some s < p, satisfying

‖(
∑
j∈Z

|Tfj |p)1/p‖Ls(X) ≤ Cp,s(
∑
j∈Z

‖fj‖pB)1/p,

where Cp,s is a constant depending on p and s.

Then there exists a function u such that u−1 ∈ Ls/p(X), ‖u−1‖s/p ≤ 1 and∫
X

|Tf(x)|pu(x)dμ(x) ≤ CX‖f‖B

for some constant CX .

Proof of Lemma 3.4. We shall prove (iii) ⇒ (iv) ⇒ (i); the rest of the implications
are obvious.

We shall need the following Kolmogorov inequality; see [6]. Let μ, ν be two
measures defined on Rn. Let T be a sublinear operator of weak type (p, p), 1 ≤
p < ∞, with measures dμ and dν. Then given s, 0 < s < p, there exists a finite
constant C such that for every subset A ⊂ Rn with ν(A) < ∞, we have

(3.7)
(∫

A

|Tf |sdν
)1/s

≤ Cν(A)1/s−1/p
(∫

|f |pdμ
)1/p

.

In our case μ and ν will be respectively dν(x) = u(x)dx and dν(x) = v(x)dx.
Assume that (iii) holds. Let x0 ∈ Rn and R > 0 be fixed. Since B(x0, R/2) ⊂

B(x,R) for x ∈ B(x0, R/2), then, for any nonnegative f , we have

ARf(x) =
1

Rn

∫
B(x,R)

f(y)dy ≥ 1

Rn

∫
B(x0,R/2)

f(y)dy, x ∈ B(x0, R/2).

Therefore, by (iii) and (3.7), we have for s < p,

( 1

Rn

∫
B(x0,R/2)

f(y)dy
)(

u(B(x0, R/2))
)1/s

≤ C
(∫

B(x0,R/2)

ARf(x)
su(x)dx

)1/s

≤ Cu(B(x0, R/2))1/s−1/p
(∫

fp(y)v(y)dy
)1/p

.
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Given an arbitrary positive function g ∈ Lp(B(x0, R/2)) we choose f = gv−1/p.
Then we have( 1

Rn

∫
B(x0,R/2)

g(y)v−1/p(y)dy
)
≤ Cu(B(x0, R/2))−1/p

(∫
gp(y)dy

)1/p

.

By duality we conclude that v−1/p belongs to Lp′
(B(x0, R)); that is, we have proved

(iv).
Now assume that (iv) holds. Let p be in the range 1 < p < ∞. To prove (i) we

define the sets E0 = B(0, R), Ek = {x : 2k−1R ≤ |x| < 2kR}, k ≥ 1.

For each k fixed we split f = f ′ + f
′′
, where f ′(x) = f(x)χB(0,R2k+1)(x).

By Kolmogorov’s inequality and the weak (1, 1) inequality in the vector-valued
setting (see [10]), for each 0 < s < 1 < p and for each k, we have that

∥∥∥(∑
j

|MR f ′
j |p

)1/p∥∥∥
Ls(Ek)

≤ C|Ek|1/s−1
∥∥∥(∑

j

|f ′
j |p

)1/p∥∥∥
L1

≤ C|Ek|1/s−1

∫
B(0,R2k+1)

(∑
j

|fj(x)|p
)1/p

dx

≤ C|Ek|1/s−1
(∫

B(0,R2k+1)

∑
j

|fj(x)|pv(x) dx
)1/p(∫

B(0,R2k+1)

v−
p′
p (x)dx

)1/p′

≤ Ck,v|Ek|1/s−1
(∫ ∑

j

|fj(x)|pv(x)dx
)1/p

.

(3.8)

On the other hand, if x ∈ Ek and y /∈ B(0, R 2k+1), then

R2k+1 < |y| ≤ |y − x|+ |x| ≤ |y − x|+R2k

and, thus, |y − x| > R2k. Hence,

(3.9) MRf
′′

j (x) = 0, for all j ∈ N, x ∈ Ek.

Pasting together (3.8) and (3.9), we see that the operator satisfies Lemma 3.5 in each
set Ek. Hence a family of weights Uk, each one with support in Ek, can be found sat-
isfying the statements in that lemma. The weight u(x) =

∑
k

1
(2kCEk

)p
Uk(x)χEk

(x)

satisfies (i).
For the case p = 1, we use the weak (1, 1) continuity of the Hardy-Littlewood

maximal operator and we have

|{x ∈ Ek : MRf
′(x) > λ}| ≤ C

λ
‖f ′‖L1 =

C

λ

∫
B(0,R2k+1)

|f(x)|dx

≤ C

λ

(∫
B(0,R2k+1)

|f(x)|v(x) dx
)∥∥∥v−1(·)χB(0,R2k+1)(·)

∥∥∥
L∞(Rn,dx)

≤ Ck,v

λ

∫
|f(x)|v(x)dx.

(3.10)

Pasting together (3.9) and (3.10), we get

|{x ∈ Ek : MRf(x) > λ}| ≤ Ck,v

λ

∫
|f(x)v(x)dx.(3.11)
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Hence the weight u(x) =
∑

k
1

2kCk,v
χEk

(x) gives (i). This concludes the proof of

Lemma 3.4. �

Proof of Theorem 2.3. The density of continuous functions with compact support
on Lp(Rn, v(x)dx) gives (2) ⇒ (3).

Let us prove (3) ⇒ (4). By taking separately the positive and the negative part
of f , we can assume that f ≥ 0. We present a proof in the case φ = P . Let x be
such that limt→0 φt ∗ f(x) exists and φR ∗ f(x) < ∞. Then there exist a constant
0 < C(x, f) < ∞ and tx,f = t(x, f) > 0 such that

(3.12) sup
t<tx,f

φt ∗ f(x) < C(x, f).

We can clearly choose tx,f < R. Let us now consider tx,f < t < R. Since φ is radial
and nonincreasing, then

φt(x−y) = t−nφ

(
x− y

t

)
≤ t−n

x,fφ

(
x− y

R

R

t

)
≤ t−n

x,fφ

(
x− y

R

)
≤
(

R

tx,f

)n

φR(x−y).

Therefore,

(3.13) sup
tx,f<t<R

φt ∗ f(x) ≤
(

R

tx,f

)n

φR ∗ f(x) < ∞.

(3.12) and (3.13) give (4).
On the other hand, Proposition 2.1 together with the arguments in its proof

gives (4) ⇒ (5).
The last implication to be proved is (5) ⇒ (1). We shall give the proof in the

case φ = W . Given R > 0 and 0 < t < R we split

Wt = W 1
t +W 2

t ,

where W 1
t = Wtχ{|x|≤(2nR)1/2}.

If j0 ∈ Z is such that 2j0t < R < 2j0+1t, then

W 1
t (x) ≤ Wt(x)

(
χ{|x|≤(2nt)1/2}(x) +

j0∑
j=0

χ{(2n2jt)1/2≤|x|≤(2n2j+1t)1/2}(x)
)

≤ C
( 1

t
n
2
χ{|x|≤(2nt)1/2}(x)+

j0∑
j=0

(2n2j)
n
2 e−

n
2 2j 1

(2n2jt)
n
2
χ{|x|≤(2n2j+1t)1/2}(x)

)
.

Thus for f ≥ 0,

sup
t<R

W 1
t ∗ f(x) ≤ CnM(2nR)1/2f(x)(3.14)

with Cn = C
(
(2n)

n
2 +

∑∞
j=0(2n2

j)
n
2 e−

n
2 2j

)
< ∞.

On the other hand, since W 2
t (x) is increasing in the time interval (0, R) we also

have

(3.15) sup
0<t<R

W 2
t ∗ f(x) = W 2

R ∗ f(x) ≤ WR ∗ f(x).

Thus, by (3.14) and (3.15),

(3.16) W ∗
Rf(x) ≤ C

(
M(2nR)1/2f(x) +WR ∗ f(x)

)
.

Then the result follows by using Proposition 2.1, Theorem 2.6 and Lemma 3.4.
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The proof in the case φ = P follows by choosing P 1
t = Ptχ{|x|≤(n)1/2R} and

repeating the above argument. �
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