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ZERO DISTRIBUTION AND FACTORIZATION

OF ANALYTIC FUNCTIONS

OF SLOW GROWTH IN THE UNIT DISC

I. CHYZHYKOV

(Communicated by Mario Bonk)

Abstract. For a meromorphic function f in the unit disc, let the ρ∞-order
of the growth be the limit of the orders of Lp-norms of log |f(reiθ)| over the
circle. In the case when the order of the maximum modulus function is smaller
than 1, we describe zero distribution of canonical products and derive a new
factorization theorem and logarithmic derivative estimates.

1. Introduction and the main result

Let D(z, t) = {ζ ∈ C : |ζ − z| < t}, z ∈ C, t > 0, and D = D(0, 1). For an
analytic function f in D, we define the maximum modulus M(r, f) = max{|f(z)| :
|z| = r}, 0 ≤ r < 1. In the sequel, the symbol C with indices stands for positive
constants which depend on the parameters indicated. We write a(r) ∼ b(r) if
limr↑1 a(r)/b(r) = 1.

Usually, the orders of growth of an analytic function f in D are defined as

ρM [f ] = lim sup
r↑1

log+ log+M(r, f)

− log(1− r)
, ρT [f ] = lim sup

r↑1

log+ T (r, f)

− log(1− r)
,

where T (r, f) = 1
2π

∫ 2π

0
log+ |f(reiθ)| dθ. It is well known that

(1.1) ρT [f ] ≤ ρM [f ] ≤ ρT [f ] + 1,

and all admissible values of the orders are possible ([1], [2], [10]).
Many theorems on analytic functions in D fail to hold when the ρM order is

smaller than 1 (see e.g. [2], [9], [11]). To be more precise we start with canonical
products. Let A = (an) be a sequence of complex numbers in D without accumu-
lation points in D. We define the exponent of convergence of A by (inf ∅ = +∞)

μ[A] = inf
{
μ ≥ 0 :

∑
an∈A

(1− |an|)μ+1 < ∞
}
.
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1298 I. CHYZHYKOV

It is well known [4, 13, 15] that the Džrbašjan-Naftalevich-Tsuji canonical product

(1.2) P (z, A, q) =
∞∏

n=1

E
(1− |an|2
1− ānz

, q
)
,

where E(w, 0) = (1− w),

E(w, q) = (1− w) exp{w + w2/2 + · · ·+ wq/q}, q ∈ N,

is an analytic function with the zero sequence A provided that
∑

an∈A(1−|an|)q+1 <
∞.

C. N. Linden [9] established a connection between ρM [P ] and the zero distribu-
tion of P , where P is of the form (1.2). To clarify this connection we need some
definitions.

Let

�(reiϕ) =
{
ζ : r ≤ |ζ| ≤ 1 + r

2
, | arg ζ − ϕ| ≤ 1− r

4

}
,

and ν(reiϕ) be the number of zeros of P in �(reiϕ). We define

(1.3) ν1(r, P ) = max
ϕ

ν(reiϕ), ν[P ] = lim sup
r↑1

log+ ν1(r, P )

− log(1− r)
,

and

(1.4) ρn[P ] = lim sup
r↑1

log+ n(r, P )

− log(1− r)
,

where n(r, P ) is the number of zeros in D(0, r).

Theorem A ([9, Theorem V]). With the notation above we have

ρT [P ] = (ρn[P ]− 1)+,(1.5)

ρM [P ]

{
= ν[P ], ρM [P ] ≥ 1,

≤ ν[P ] ≤ 1, ρM [P ] < 1.
(1.6)

Remark 1.1. We note that relation (1.6) follows essentially from [13, 15]. Moreover,
(ρn[P ]− 1)+ is equal to the convergence exponent of the zero sequence of P .

A function ρ : [0, 1) → R+ is called a proximate order ([6, p. 55]; cf. [8]) if it
satisfies the following conditions:

(i) ρ is differentiable on [0, 1);
(ii) limr↑1 ρ(r) = ρ0 ∈ [0,∞);
(iii) limr↑1 ρ

′(r)(1− r) log(1− r) = 0.

An advantage of this definition is that for every analytic function f of finite
positive order ρM [f ] there exists a proximate order ρ(r) such that

lim sup
r↑1

(1− r)ρ(r) logM(r, f) = 1.

Linden’s proof of Theorem A is based on the following lemma [9, Lemma I],
which we formulate in a suitable form for our purposes.

Lemma B. Let ρ : [0, 1) → R+ be a proximate order, ρ(r) → ρ > 0 (r ↑ 1). Let
Ps(z) = P (z, A, s) be a canonical product. Suppose that for some C1 > 0, we have

ν(reiϕ) ≤ C1

(1− r)ρ(r)
, 0 ≤ r < 1, 0 ≤ ϕ < 2π,
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and s > ρ. Then

log |Ps(z)| ≤ 2s+2
∞∑

n=1

∣∣∣1− |an|2
1− zān

∣∣∣s+1

≤ C2

(1− |z|)ρ(r) , z ∈ D,

for some constant C2 > 0.

Remark 1.2. Linden proved the lemma for the case ρ(r) ≡ ρ, but the same proof
works in the general case as well (cf. [6, Chaps. 2, 3]).

As we can see from Theorem A, the value ν[P ] coincides with ρM [P ] when the
order is greater than 1. The question arises:

Question 1.3. What kind of growth characteristic can describe zero distribution
in the case when ρM [f ] ≤ 1?

For a meromorphic function f(z), z ∈ D, and p ≥ 1 we define

mp(r, f) =

(
1

2π

∫ 2π

0

| log |f(reiθ)||p dθ
) 1

p

, 0 < r < 1.

We write

ρp[f ] = lim sup
r↑1

logmp(r, f)

− log(1− r)
.

A characterization of ρp-orders can be found in [12].
We define the ρ∞-order of f as

ρ∞[f ] = lim
p→∞

ρp[f ]

(existence of the limit follows from the fact that Lp-norms are monotone in p). It
follows from the First Fundamental Theorem of Nevanlinna that ρ1[f ] = ρT [f ]. Be-
sides, it is known (e.g. [11]) that ρM [f ] ≤ ρp[f ]+

1
p (p > 0), which generalizes (1.1).

Consequently, ρM [f ] ≤ ρ∞[f ]. Moreover, Linden [11] proved that ρ∞[f ] = ρM [f ]
provided that ρM [f ] ≥ 1. Thus, the values ρ∞[f ] and ν[f ] have similar behav-
ior with respect to the maximum modulus order when f is a canonical product.
The main purpose of this paper is to prove that ρ∞[f ] coincides with ν[f ] for the
canonical products.

For a sequence A in D with the finite convergence exponent we define ν[A] =
ν[P (z, A, q)] for an appropriate choice of q. It is clear that the definition does not
depend on q.

Theorem 1.4. Given a sequence A = (ak) in D such that ν = ν[A] < ∞ and
an integer s ≥ [ν] + 1, we define the canonical product Ps(z) = P (z, A, s). Then
ρ∞[Ps] = ν.

Theorem 1.5. Let f be an analytic function in D. Then ν[f ] ≤ ρ∞[f ].

Example 1.6. Let ak = 1 − 1/(k log2 k), k ∈ {3, . . . }. We consider the canonical
product B(z) = P (z, A, 0), which is a Blaschke product up to a constant factor.
Since |B| is bounded in D, we have ρM [B]=ρT [B]=0, and consequently ρ∞[B]≤1.

On the other hand, it is easy to check that

n(r, B) ∼ 1

(1− r) log2(1− r)
, r ↑ 1,
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and
d1

(1− r) log2(1− r)
≤ ν(r) ≤ d2

(1− r) log2(1− r)
, r ↑ 1,

for some positive constants d1, d2. Hence, ν[B]=1, and by Theorem 1.5, ρ∞[B]=1.

In Section 2 we prove Theorem 1.4, which is the main result of the paper. In
Section 3 we apply the theorem to problems of factorization of analytic and mero-
morphic functions in D and derive some new logarithmic derivative estimates.

2. Proofs of Theorems 1.4 and 1.5

We write ρ = ρ∞[Ps].
First, we show that ν ≤ ρ. The proof of this inequality is based on ideas from

[8, Chap. 2, Lemmas 10, 11].

Lemma 2.1. Under the assumptions of Theorem 1.4 we have

(2.1) lim sup
r↑1

sup
ϕ

log log inf
ζ∈�(reiϕ)

1
|Ps(ζ)|

log 1
1−r

≤ ρ.

Note that inequality (2.1) is a counterpart of Levin’s condition (see [8, Chap. 2]),
which plays an important role in the theory of subharmonic functions in the half-
plane ([5, Theorem 18]) and the theory of functions of completely regular growth
in an angle [8].

Proof of Lemma 2.1. Suppose that (2.1) does not hold; i.e., there exist ε > 0, a
sequence (rn) tending to 1, and a sequence (ϕn) such that

log
1

|Ps(ζ)|
≥ 1

(1− |ζ|)ρ+ε

for all ζ ∈ �(rne
iϕn). Then∫ ϕn+

1−rn
4

ϕn− 1−rn
4

| log |Ps(rne
iθ)||p dθ ≥ 1− rn

2(1− rn)(ρ+ε)p
.

Hence, mp(rn, Ps) ≥
(

1
4π

) 1
p (1 − rn)

−ρ−ε+ 1
p . Thus, ρp[Ps] ≥ ρ + ε − 1

p . Passing to

the limit as p → ∞, we obtain ρ∞[Ps] ≥ ρ+ ε. This contradiction proves (2.1). �
If ρ > 0, then the inequality ν ≤ ρ follows from ρM [Ps] ≤ ρ and the next lemma.

Lemma 2.2. Let f be an analytic function in D, ρ : [0, 1) → R+ be a proximate
order, ρ(r) → ρ > 0 (r ↑ 1). Let

log |f(reiϕ)| ≤ C3(1− r)−ρ(r), r ∈ [0, 1)

for some C3 > 0.
If there exist N > 0 and r0 ∈ (0, 1) such that for all r ∈ [r0, 1) and ϕ ∈ [0, 2π)

and some z∗ ∈ �(reiϕ) we have

log |f(z∗)| > − N

(1− r)ρ(r)
,

then

ν(reiϕ) ≤ C4
C3 +N

(1− r)ρ(r)
, r ↑ 1,

where C4 is an absolute constant.
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Proof of Lemma 2.2. Without loss of generality we may assume that ϕ = 0. Let
r ∈ [0, 1). We write R = r + (1 − r)/4, ϕr = (1 − r)/4. Then 1 − R = 3

4 (1 − r).
Since

ϕ2
r +

(1 + r

2
−R

)2

=
1

8
(1− r)2,

and 1
2
√
2
< 2

5 , we have

(2.2) �(r) ⊂ D
(
R,

2

5
(1− r)

)
, r ∈ [r1, 1)

for some r1 ∈ [0, 1).
By the assumptions of Lemma 2.2 there exists zr ∈ �(r) ⊂ D(R, 2

5 (1− r)) such
that

(2.3) log |f(zr)| > − N

(1− |zr|)ρ(|zr|)
≥ − N(

1−r
4

)ρ(1− 1−r
4 )

,

because |zr| ≤ 1− 1−r
4 . On the other hand, we have

(2.4) log |f(z)| ≤ C3(
1−r
4

)ρ(1− 1−r
4 )

, z ∈ D
(
R,

1− r

2

)
.

Therefore the function ψr(z) := f(z+R)
f(zr)

is analytic in D(0, 1−r
2 ). We also have

ψr(zr − R) = 1, and

log |ψr(z)| ≤ (C3 +N)
(1− r

4

)−ρ(1− 1−r
4 )

, |z| ≤ 1− r

2

by (2.3) and (2.4).
We need the following lemma [8, Chap. 2, Lemma 9].

Lemma C. Let Φ be an analytic function in D(0, R0), and let z0 ∈ D(0, lR0),
where l < 1, be such that |Φ(z0)| = 1. Then

n(tR0,Φ) ≤ C5(l, t) logM(R0,Φ), l < t < 1,

where C5(l, t) =
(
log 1+lt

l+t

)−1

.

Applying Lemma C with R0 = (1−R)/2, l = 2
5 : 1

2 = 0.8, we get

ν(r) ≤ n
(
D
(
R,

1− r

2

))
≤ C5(0, 8; t)(C3 +N)

(1− r

4

)−ρ(1− 1−r
4 )

, 0.8 < t < 1.

Fixing t ∈ (0.8; 1) and using the property
(
1−r
4

)−ρ(1− 1−r
4 ) ∼ 4−ρ(1−r)−ρ(r) (r ↑ 1),

we obtain the required assertion. Lemma 2.2 is proved. �

If ρ = 0, then we can apply previous arguments with arbitrary positive ε0 instead
of ρ(r) to obtain ν ≤ ε0. Thus ν = 0. The inequality ρ ≤ ν follows from the next
lemma. Note that our proof of Lemma 2.3 essentially repeats the arguments from
[11, Lemma 1].

Lemma 2.3. Let A = (an) be a sequence of complex numbers in D, ρ be a proximate
order on [0, 1), ρ(r) → ρ0 (r ↑ 1). Suppose that

(2.5) ν(reiϕ) ≤ C6

(1− r)ρ(r)
, r ∈ [0, 1), ϕ ∈ [0, 2π)
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for some C6 > 0. If s > ρ0, then there exists a constant C7, independent of r and
p, such that

mp(r, Ps) ≤ C7

log 1
1−r

(1− r)ρ(r)
, p ≥ 1, r ∈ [0, 1).

Proof of Lemma 2.3. We have to prove that

(2.6)

∫ 2π

0

| log |Ps(re
iθ, A)||p dθ ≤ Cp

7

logp 1
1−r

(1− r)pρ(r)
.

We deal with the integral in (2.6) by covering the range of integration by [π/(1−r)]+
1 intervals of the form [τ+r−1, τ+1−r] for τ = 2k(1−r) and k ∈ {0, . . . , [π/(1−r)]},
showing that

(2.7)

∫ τ+1−r

τ+r−1

| log |Ps(re
iθ, A)||p dθ ≤ Cp

8 (1− r)−pρ(r)+1 logp
1

1− r

for each τ , where the constant C8 is independent of τ . For convenience and without
loss of generality, we may suppose that τ = 0.

We shall need some known results.

Theorem D (Tsuji, [14, Theorem V.25, p. 224]). For the canonical product Ps(z)

and positive ε, if Dm denotes the disc D
(
am, (1− |am|2)s+4

)
, then

(2.8) log |Ps(z)| ≥ K log(1− |z|)
∑
m

∣∣∣1− |am|2
1− zām

∣∣∣s+1+ε

,
1

2
≤ |z| < 1, z �∈

⋃
m

Dm.

Without loss of generality, we assume that 3
4 ≤ |am| < 1. For given r, let

γr = {z = reiθ : r − 1 ≤ θ ≤ 1− r}, and F (r) = {m : Dm ∩ γr �= ∅}, where Dm are
the exceptional discs of Theorem D. By (2.5), we have

(2.9) |F (r)| ≤ C9(1− r)−ρ(r),

where |F (r)| denotes the number of elements in the set F (r). We consider the
factorization Ps = B1B2B3, where

B1(z) =
∏

m 	∈F (r)

E
(1− |am|2
1− āmz

, s
)
,

B2(z) =
∏

m∈F (r)

exp
s∑

j=1

1

j

(1− |am|2
1− zām

)j

,

B3(z) =
∏

m∈F (r)

(
1− 1− |am|2

1− zām

)
=

∏
m∈F (r)

( ām(am − z)

1− zām

)
.

First we note that for any positive number ε, Theorem D and Lemma B give∫ 1−r

r−1

| log |B1(re
iθ)||pdθ ≤

∫ 1−r

r−1

Cp
10 log

p 1

1− r

(∑
m

∣∣∣ 1− |am|2
1− reiθām

∣∣∣s+1
)p

dθ

≤ Cp
10 log

p 1

1− r

1

(1− r)pρ(r)
2(1− r) =

C11(ρ) log
p 1

1−r

(1− r)pρ(r)−1
.(2.10)
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Next, the inequality |1− zām| > 1
2 (1− |am|2) yields

| log |B2(z)|| <
∑

m∈F (r)

s∑
j=1

1

j

∣∣∣1− |am|2
1− zām

∣∣∣j ≤ C12|F (r)|.

Hence (2.9) implies that

(2.11)

∫ 1−r

r−1

| log |B2(re
iθ)||pdθ ≤ C13(1− r)1−pρ(r).

Finally, in [11, p. 124] it is proved that

(2.12)

∫ 1−r

r−1

| log |B3(re
iθ)||pdθ ≤ C14|F (r)|p(1− r).

Inequality (2.7) now follows from (2.10)–(2.12), so Lemma 2.3 is proved. �
Proof of Theorem 1.5. We note that the proof of Lemma 2.1 is valid for any analytic
function f in D. Let A = (ak) be the zero sequence of f , and ρ > 0. Since
ρM [f ] ≤ ρ∞[f ], using Lemmas 2.1 and 2.2 we deduce that ν[A] ≤ ρ∞[f ], i.e.
ν[f ] ≤ ρ∞[f ]. �

3. Applications

3.1. Factorization. In [9, Theorem I] Linden proved the following result.

Theorem E. Let f be analytic in D and of order ρM [f ] ≥ 1. Then

f(z) = zpP (z)g(z),

where P is a canonical product displaying the zeros of f , p is a nonnegative integer,
g is nonzero and both P and g are analytic and of ρM -order at most ρM [f ].

Further, in Theorem IV [9], Linden showed that actually

max{ρM [P ], ρM [g]} ≤ max{ρM [f ], ν[f ]}.
Taking into account Theorem 1.5 we deduce that max{ρM [P ], ρM [g]} ≤ ρ∞[f ] in
this case.

Theorem 3.1. Let f be analytic in D, and of finite order ρ∞[f ]. Then

f(z) = zpP (z)g(z),

where P is a canonical product displaying the zeros of f , p is a nonnegative integer,
g is nonzero and both P and g are analytic and of ρ∞-order at most ρ∞[f ].

Proof of Theorem 3.1. Let s = [ν[f ]] + 1. Consider the canonical product P (z) =
P (z, A, s). This leads to the factorization f(z) = zpPs(z)g(z), where p is the
multiplicity of the zero at the origin and g is analytic and nonzero in D. By
Theorems 1.4 and 1.5, we have

ρ∞[Ps] = ν[Ps] = ν[f ] ≤ ρ∞[f ].

Since the multiplication by the factor zp does not change the order ρp and

ρp[g] ≤ max{ρp[f ], ρp[Ps]} ≤ max{ρ∞[f ], ρ∞[Ps]},
passing to the limit in the latter inequality we get

ρ∞[g] ≤ max{ρ∞[f ], ρ∞[Ps]} = ρ∞[f ].

�
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The ρ∞-order of nonconstant meromorphic functions has the following proper-
ties:

i) ρ∞[1/f ] = ρ∞[f ];
ii) ρ∞[fg] ≤ max{ρ∞[f ], ρ∞[g]}.

These properties yield ρ∞[f/g] ≤ max{ρ∞[f ], ρ∞[g]}.
In view of the last inequality and Theorem 3.1 the next question arises naturally:

Question 3.2. Given a meromorphic function f in D of finite order, is it possible
to represent it in the form

(3.1) f(z) = zp
P (z)

Q(z)
g(z),

where p ∈ Z, P,Q are canonical products displaying zeros and poles of f respec-
tively, g is a nonzero analytic function, and all P , Q, g are of ρ∞-order at most
ρ∞[f ]?

It turns out that the answer is in the negative.

Theorem 3.3. There exists a meromorphic function f in D such that ρ∞[f ] = 0,
and ν[A] = ν[A∗] = 1, where A and A∗ are sequences of zeros and poles of f ,
respectively. Therefore, for any factorization of f of the form (3.1), ρ∞[P ] ≥ 1,
ρ∞[Q] ≥ 1.

Proof of Theorem 3.3. Let rk = 1 − 2−k, ak = rk, a
∗
k = ak + 2−k2

, pk = [2kk−2],
k ∈ N. Since

∑∞
k=1 pk(1− ak) < +∞, we can consider the Blaschke products

(3.2) B(z) =
∞∏
k=1

( ak − z

1− zāk

)pk

≡
∞∏
k=1

(
F (z, ak)

)pk

, B∗(z) =
∞∏
k=1

(
F (z, a∗k)

)pk

,

which are analytic in D.
Define f(z) = B(z)/B∗(z). We shall show that ρ∞[f ] = 0, though ρ∞[B] =

ρ∞[B∗] = 1. The latter equalities follow from Corollary 1.5 and the equalities
ν[B] = ν[B∗] = 1, which are easy to check. We are going to prove that mp(r, f) is
bounded on [0, 1) for all p > 1. This will imply that ρ∞[f ] = 0.

Let z = reiϕ, r ∈ [rm, rm+1) for some m ∈ N. In order to estimate | log |f(reiϕ)||
we consider three cases.

If Im z �= 0, we can write

(3.3)
∣∣∣log |F (z, ak)| − log |F (z, a∗k)|

∣∣∣ = ∣∣∣∣Re
∫
[ak,a∗

k]

1− |z2|
(ζ − z)(1− z̄ζ)

dζ

∣∣∣∣.
If k ≤ m− 2 or k ≥ m+ 2, and ζ is such that rk ≤ |ζ| ≤ rk+1, then

|ζ − z| ≥ rm+2 − rm+1 ≥ (1− r)/4

and

(3.4)
1− |z|2

|ζ − z||1− zζ| ≤
1− |z|2

1−|z|
4 (1− |ζ|)

=
8

1− |ζ| .
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Combining (3.3) and the latter inequality, we obtain

(m−2∑
k=1

+
∞∑

k=m+2

)∣∣∣pk log∣∣∣F (z, ak)

F (z, a∗k)

∣∣∣∣∣∣
≤

∞∑
k=1

8pk(a
∗
k − ak)

1− a∗k
≤

∞∑
k=1

8
2−k2

2k

(2−k − 2−k2)k2
< C15.(3.5)

We note that (3.4) holds in the case when rm−1 ≤ |ζ| ≤ rm+2 and |ϕ| ≥ 1 − r
for m ≥ m0, and some m0 ∈ N. Hence,

(3.6)

m+1∑
k=m−1

pk

∣∣∣log |F (z, ak)|
|F (z, a∗k)|

∣∣∣ ≤ m+1∑
k=m−1

8pk(a
∗
k − ak)

1− a∗k
< C15.

Then, using (3.5) and (3.6), we deduce

( 1

2π

∫
1−r≤|ϕ|≤π

| log |f(reiϕ)||p dϕ
) 1

p

≤
( 1

2π

∫
1−r≤|ϕ|≤π

( ∞∑
k=1

pk

∣∣∣log∣∣∣F (reiϕ, ak)

F (reiϕ, a∗k)

∣∣∣∣∣∣)p

dϕ
) 1

p ≤ 2C15.(3.7)

In the case |ϕ| ≤ 1− r we write

log |F (z, ak)| − log |F (z, a∗k)| = log
∣∣∣z − ak
z − a∗k

∣∣∣+ log
∣∣∣1− za∗k
1− zak

∣∣∣.
We have∣∣∣log∣∣∣1− za∗k

1− zak

∣∣∣∣∣∣ = ∣∣∣log∣∣∣1− z(a∗k − ak)

1− zak

∣∣∣∣∣∣ ≤ C16(a
∗
k − ak)

|1− zak|
≤ C17(a

∗
k − ak)

1− ak
, k ∈ N.

As above, we get
∑∞

k=1 pk

∣∣∣log∣∣∣1−za∗
k

1−zak

∣∣∣∣∣∣ < C18.

To finish the proof we need a lemma.

Lemma 3.4. For any a, b ∈ C, and p > 1,

1

2π

∫ 2π

0

∣∣∣log∣∣∣a− eiϕ

b− eiϕ

∣∣∣∣∣∣p dϕ ≤ C(p)|a− b|.

Proof of Lemma 3.4. Since we are going to apply the lemma in the case |a−b| < 1,
we omit the proof of the case |a− b| ≥ 1 for simplicity.

We divide the unit circle into three parts:

I1 = {eiθ : |eiθ − b| > 2|a− b|} ∪ {eiθ : |eiθ − a| > 2|a− b|},
I2 = {eiθ : |eiθ − b| < |a− b|/2} ∪ {eiθ : |eiθ − a| < |a− b|/2},
I3 = ∂D \ (I1 ∪ I2).

(3.8)



1306 I. CHYZHYKOV

Let eiθ ∈ I1. Without loss of generality we may assume that |eiθ − b| > 2|a − b|,
b = |b|. Then

∣∣∣ |eiθ − a|
|eiθ − b| − 1

∣∣∣ ≤ |a− b|
|eiθ − b| ≤

1

2
.

Hence,

1

2π

∫
I1

∣∣∣ log |eiθ − a|
|eiθ − b|

∣∣∣p ≤ 1

π

∫
|eiθ−b|>2|a−b|

( 2|a− b|
|eiθ − b|

)p

dθ.

For J1 = {eiθ ∈ I1 : |θ| > |a− b|}, we have

(3.9)
1

π

∫
J1

( 2|a− b|
|eiθ − b|

)p

dθ ≤ mes(J1)

π
≤ 2|a− b|

π
,

where mes(J1) is the Lebesgue measure of the set J1.
If eiθ belongs to the complement of J1 in I1, we consider two subcases. If |b| ≥ 1

2 ,
then standard estimates yield

1

2π

∫
I1\J1

∣∣∣ log∣∣∣ |eiθ − a|
|eiθ − b|

∣∣∣∣∣∣p

≤ (2|a− b|)p
π

(∫
|a−b|<|θ|≤ π

2

dθ

(b| sin θ|)p +

∫
π
2 <|θ|≤π

dθ

)

≤ (2|a− b|)p
π

(
πp

∫ π/2

|a−b|

dθ

θp
+ π

)
≤ 2p+1πp−1

p− 1
|a− b|.

(3.10)

So, we have the required estimate for the integral over I1.
We then consider the integral over I2. We deduce

∫
I2

∣∣∣ log∣∣∣ eiθ − b

eiθ − a

∣∣∣∣∣∣pdθ ≤ 2

∫
|eiθ−b|<|a−b|/2

∣∣∣ log∣∣∣ eiθ − b

eiθ − a

∣∣∣∣∣∣pdθ
≤ 2

∫
|eiθ−a|<|a−b|/2

(
log

3|a− b|
2|eiθ − b|

)p

dθ ≤ 2

∫
|eiθ−b|<|a−b|/2

(
log

3|a− b|
2| sin θ|

)p

≤ 2

∫
|θ|<|a−b|

(
log

3π|a− b|
4|θ|

)p

dt ≤ 2|a− b|
∫
|τ |<1

(
log

3π

4τ

)p

dτ = C19(p)|a− b|.

(3.11)

Finally, if eiθ ∈ ∂D \ (I1∪ I2), then we have
∣∣∣ log∣∣∣ eiθ−a

eiθ−b

∣∣∣∣∣∣ ≤ 4, and mes(∂D \ (I1∪
I2)) ≤ C20|a− b|. Therefore,

(3.12)

∫
∂D\(I1∪I2)

∣∣∣ log∣∣∣ eiθ − b

eiθ − a

∣∣∣∣∣∣pdθ ≤ C21(p)|a− b|.

The assertion of the lemma follows from (3.9)–(3.12). �
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We return to proving Theorem 3.3. Using Minkowski’s inequality, the estimates
(3.5), (3.6), and Lemma 3.4 we obtain, for rm ≤ r ≤ rm+1,(

1

2π

∫
|ϕ|≤1−r

| log |f(reiϕ)||p dϕ
) 1

p

≤
(

1

2π

∫
|ϕ|≤1−r

∣∣∣ m+1∑
k=m−1

pk

(
log

∣∣∣reiϕ − ak
reiϕ − a∗k

∣∣∣+ log
∣∣∣1− reiϕa∗k
1− reiϕak

∣∣∣)

+
(m−2∑

k=1

+
∞∑

k=m+2

)
pk log

∣∣∣F (reiϕ, ak)

F (reiϕ, a∗k)

∣∣∣∣∣∣p dϕ)
1
p

≤
m+1∑

k=m−1

pk

(
1

2π

∫
|ϕ|≤1−r

∣∣∣log∣∣∣ eiϕ− ak

r

eiϕ − a∗
k

r

∣∣∣∣∣∣pdϕ)
1
p

+
( 1

2π

∫
|ϕ|≤1−r

(C18+C15)
p dϕ

) 1
p

≤ C22

m+1∑
k=m−1

(2kk−2(a∗k − ak))
1
p + C23(1− r)

1
p

≤ C24((2
−(m−1)2+mm−2)

1
p + (1− rm)

1
p ) = o(1), m → +∞.

The last estimate together with (3.7) implies mp(r, f) = O(1) as r ↑ 1 for any
p > 1. �

3.2. Logarithmic derivative estimates. Results of this section allow us to ob-
tain sharp lower estimates for the growth of solutions of linear differential equations
in the unit disc. For this purpose one has to follow the scheme of the proof of The-
orem 1.4 from [3]. However, it seems that neither the approach based on Herold’s
comparison theorem (see [7]) nor the Wiman-Valiron method give us sharp upper
estimates for the ρ∞-order of solutions of linear differential equations in the most
interesting case when ρM < 1.

The following theorem is proved in [3].

Theorem F. Let f be an analytic function in D such that ρM [f ] < ∞. If ρM [f ] >
0, let ρ be a proximate order of f . Let k and j be integers satisfying k > j ≥ 0,
and let δ, ε ∈ (0, 1). Then there exist an at most countable collection of discs
Dν = D(zν , rν), where rν < 1− |zν |, and a constant C > 0 such that

(3.13)
∑

R<|zν |<1

rν ≤ δ(1−R), R ↑ 1,

and

(3.14)

∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤
⎧⎪⎪⎨
⎪⎪⎩

C

(
log 1

1−|z|
δ(1−|z|)ρ(|z|)+1

)k−j

, if ρM [f ] > 1,(
1

δ(1−|z|)

)2(k−j)+ε

, if ρM [f ] ≤ 1,

for all z ∈ D \
⋃

ν Dν .

For a measurable set E ⊂ [0, 1), the upper linear density is defined as

D(E) = lim sup
r↑1

mes(E ∩ [r, 1))

1− r
.
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Corollary G. Under the assumptions of Theorem F there exists an exceptional set
E ⊂ [0, 1) with D(E) ≤ 2δ such that

(3.15)

∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤
(

1

1− |z|

)(max{ρM [f ],1}+1)(k−j)+ε

, |z| �∈ E.

Since Theorem F and Corollary G are sharp in the sense that one cannot
remove ε in the exponent, it is not possible to obtain a better estimate than
O((1 − |z|)−2(k−j)−ε) in the same notation. However, the concept of ρ∞-order
allows us to improve this estimate.

Theorem 3.5. Let f be an analytic function in D such that ρ = ρ∞[f ] < ∞. Let
k and j be integers satisfying k > j ≥ 0, and let δ, ε ∈ (0, 1). Then there exist an
at most countable collection of discs Dν = D(zν , rν), where rν < 1 − |zν |, and a
constant C > 0 such that

(3.16)
∑

R<|zν |<1

rν ≤ δ(1−R), R ↑ 1,

and

(3.17)

∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ C

(
1

δ(1− |z|)ρ+1+ε

)k−j

,

for all z ∈ D \
⋃

ν Dν .

Example 3.6. Let f(z) = exp{−(1− z)−α}, where α > 0, f(0) = 1/e. Then f is
bounded if α ≤ 1, and hence ρM [f ] = 0. On the other hand, ρM [f ] = α if α > 1.

Besides, ρ∞[f ] = α for all positive α, and f ′(z)
f(z) = − α

(1−z)α+1 , which shows that

estimate (3.17) is sharp in the sense that ε cannot be removed.

The proof of Theorem 3.5 is similar to that of Theorem F [3]. Define A1 =
D(0, 12 ) and the annuli Aν = {ζ : rν−1 < |ζ| ≤ rν} for rν = 1 − 2ν , ν ≥ 2. Then
clearly D =

⋃
ν Aν . We now state and sketch the proof of an estimate (cf. Lemma 3

[3]), which is crucial in proving Theorem 3.5.

Lemma 3.7. Let f be an analytic function in D such that ρ = ρ∞[f ] < ∞. Let
{ak} denote the sequence of zeros of f listed according to multiplicities and ordered
by increasing moduli, and let 0 < δ < 1. Then there exists an at most countable
collection of discs Dνj = D(zνj , ρνj), where ρνj < 1− |zνj |, such that

(3.18)
∑

|ak|≤rν+1

1

|z − ak|
≤ C(ρ,R0)

δ(1− r)ρ+1+ε
, z ∈ Aν \

⋃
j

Dνj ,

where

(3.19)
∑

R<|zνj |<1

ρνj ≤ δ(1−R), R ↑ 1.

Proof of Lemma 3.7. Without loss of generality, we may assume that arg z = 0.
Define Is = {−2s + 1, . . . ,−1, 0, 1, . . . , 2s} for s ∈ N. For τ ∈ Is, define the polar
rectangles Asτ = {ζ ∈ As : (τ − 1)π2−s ≤ arg ζ < τπ2−s}.

Denote

I∗s =

{
Is, 1 ≤ s ≤ ν − 2,
Is \ {0, 1}, ν − 1 ≤ s ≤ ν + 1.

With this notation, we have the following result [3, Lemma 4].
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Lemma H. Let ν ≥ 2, 2 ≤ s ≤ ν + 1, τ ∈ I∗s , ζ ∈ Asτ , z ∈ Aν and arg z = 0.
Then

|ζ − z| ≥
{
τ2−s−1, τ > 0,

(|τ |+ 1)2−s−1, τ ≤ 0.

We return to the proof of Lemma 3.7. Let n(U) denote the number of the points
ak in a set U ⊂ D. Recall that �(reiϕ)=

{
ζ : r≤|ζ|≤ 1+r

2 , | arg ζ − ϕ| ≤ π
4 (1− r)

}
.

Then ν(reiϕ) ≤ C(1− r)−ρ−ε/2.
If z ∈ Aν and z �= ak for all k, write

∑
|ak|≤rν+1

1

|z − ak|
=

ν+1∑
s=1

∑
τ∈Is

∑
ak∈Asτ

1

|z − ak|

≤
ν+1∑
s=1

∑
τ∈I∗

s

∑
ak∈Asτ

1

|z − ak|
+

ν+1∑
s=ν−1

1∑
τ=0

∑
ak∈Asτ

1

|z − ak|

=
∑

1
+
∑

2
.

(3.20)

To deal with the sum
∑

1 in (3.20), we first observe that rs = 1+rs−1

2 and

τπ2−s − (τ − 1)π2−s = π2−s = 2π2−2(1− rs−1). Lemma H now yields

∑
1
≤

ν+1∑
s=1

∑
τ∈I∗

s

n(Asτ )

infζ∈Asτ
|z − ζ|

≤
ν+1∑
s=1

⎛
⎝ ∑

τ∈I∗
s , τ>0

n1(rs−1)

τ
2s+1 +

∑
τ∈I∗

s , τ≤0

n1(rs−1)

|τ |+ 1
2s+1

⎞
⎠

≤ 8
ν+1∑
s=1

n1(rs−1)

1− rs−1

(
2s∑
τ=1

1

τ

)

≤ 8(1 + (ν + 1) log 2)
ν+1∑
s=1

n1(rs−1)

1− rs−1
≤ 24ν

ν+1∑
s=1

2(s−1)(ρ+1+ε)

< 48ν2ν(ρ+1+ε/2) <
C

(1− rν)ρ+1+ε
.

(3.21)

To deal with the sum
∑

2 in (3.20), define

U =

ν+1⋃
s=ν−1

1⋃
τ=0

Asτ , Nν = n(U), and δν = δ · 2−ν−6.

Then, by the Cartan lemma [8, pp. 19–21], there exists a finite collection of discs
D(wνj, hνj) with

∑
j hνj = 2δν and a permutation of {ak} ⊂ U , say b1, . . . , bNν

,

such that |z− bm| > mδν/Nν for all m = 1, . . . , Nν and z �∈
⋃

j D(wνj , hνj). Hence,
by noting that

n(Asτ ) ≤ n1(rs−1), s = ν − 1, . . . , ν + 1, τ = 0, 1,
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it follows that ∑
2
=

∑
ak∈U

1

|z − ak|
=

Nν∑
m=1

1

|z − bm|

≤ Nν

δν

Nν∑
m=1

1

m
≤ 25Nν

δ(1− rν+1)
(1 + logNν)

≤ C

δ

ν+1∑
s=ν−2

n1(rs)

1− rs
log n1(rs) ≤

C

δ(1− rν)ρ+1+ε

(3.22)

for all z ∈ Aν such that z �∈
⋃

j D(wνj , hνj).

By combining (3.20)–(3.22) we conclude that

(3.23)
∑

|ak|≤rν+1

1

|z − ak|
≤ C(ρ,R0)

δ(1− r)ρ+1+ε

for all z ∈ Aν such that z �∈
⋃

j D(wνj , hνj).

An estimate of the exceptional set repeats that given in [3]. �
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