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A CONFORMAL INTEGRAL INVARIANT

ON RIEMANNIAN FOLIATIONS

GUOFANG WANG AND YONGBING ZHANG

(Communicated by Lei Ni)

Abstract. Let M be a closed manifold which admits a foliation structure F
of codimension q ≥ 2 and a bundle-like metric g0. Let [g0]B be the space of
bundle-like metrics which differ from g0 only along the horizontal directions
by a multiple of a positive basic function. Assume Y is a transverse conformal
vector field and the mean curvature of the leaves of (M,F , g0) vanishes. We

show that the integral
∫
M Y (RT

gT )dμg is independent of the choice of g ∈ [g0]B ,

where gT is the transverse metric induced by g and RT is the transverse
scalar curvature. Moreover if q ≥ 3, we have

∫
M Y (RT

gT )dμg = 0 for any

g ∈ [g0]B . However there exist codimension 2 minimal Riemannian foliations
(M,F , g) and transverse conformal vector fields Y such that

∫
M Y (RT

gT )dμg �=
0. Therefore,

∫
M Y (RT

gT )dμg is a nontrivial obstruction for the transverse

Yamabe problem on minimal Riemannian foliation of codimension 2.

1. Introduction

In [13] Kazdan and Warner discovered an obstruction to the existence of metrics
with prescribed scalar curvature on S2. Let (S2, gS2) be the unit sphere in R3 with
the standard metric and h be a given function on S2. Kazdan and Warner found
that if ϕ is a solution to the equation

(1.1) Δg
S2
ϕ+ 2− he−ϕ = 0,

then for any first order spherical harmonic F (i.e., the restriction to S2 of a linear
function in R3) it holds that

(1.2)

∫
S2

g(∇F,∇h)e−ϕdμg
S2

= 0.

If g = e−ϕgS2 and ϕ satisfies (1.1), the scalar curvature of g is equal to h. Hence,
(1.2) is just

(1.3)

∫
S2

(∇F )(Rg)dμg = 0.

An integrability condition similar to (1.2) was proved for higher dimensional
spheres [14]. The integrability condition (1.2) was generalized to any closed Rie-
mannian manifold with a conformal vector field; see [5, 6]. Note that ∇F in (1.2)
is a conformal vector field with respect to the standard metric on S

2. Let (M, g0)
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be a closed Riemannian manifold and [g] be the conformal class of g0. Bourguignon
and Ezin proved that for any conformal vector field Y

(1.4)

∫
M

Y (Rg)dμg = 0, ∀ g ∈ [g0].

By (1.4), they found new functions which cannot be realized as the scalar curvature
of a Riemmanian metric on S2. We remark that the proof given in [6] is different
for dimension n ≥ 3 and for dimension n = 2. There is another interesting proof
given in [5]. See also [9]. One first shows that

(1.5)

∫
M

Y (Rg)dμg

is a conformal invariant, and then shows that this invariant vanishes by a result of
Obata. For the case that (M, g) is a compact manifold with boundary, see [16].

Before [5] and [6], Futaki [8] found an analogous invariant for the complex Monge-
Ampere equation on Kähler-Einstein manifolds of positive first Chern class. This
is the well-known Futaki invariant, which is one of the main obstructions to the
existence of Kähler-Einstein metrics of positive first Chern class.

Very recently we have studied a Yamabe type problem on Riemannian foliations,
i.e., finding a bundle-like metric g in a given basic conformal class with constant
transverse scalar curvature. This is a natural generalization of the Yamabe problem
to Riemannian foliation.

Let us first briefly recall the definitions of basic conformal class. Let (M,F , g0)
be a closed Riemannian foliation of codimension q ≥ 2 with a bundle-like metric g0.
From now on we assume that M is oriented and F is transversally oriented. Let L
denote the integrable subbundle given by F . The bundle-like metric g0 induces a
holonomy invariant transverse metric gT0 on the normal bundle ν(F) = TM/L of
the foliation. Let Ω0

B(M,F) denote the space of all basic functions and

(1.6) [g0]B = {g = g0|L + eug0|L⊥ : u ∈ Ω0
B(M,F)},

where [g0]B is called the basic conformal class of the bundle-like metric g0. Any
transverse metric of the form gT = eugT0 is holonomy invariant if and only if u is
a basic function. We call a transverse metric gT conformal to gT0 if gT = eugT0 for
a basic function u. We denote the space of all conformal transverse metrics of gT0
by [gT0 ]B. There is a one-to-one correspondence between [g0]B and [gT0 ]B, and we
denote by gT the transverse metric induced by g ∈ [g0]B . We denote by RT

gT the

transverse scalar curvature of gT . A Riemannian foliation is called minimal if the
mean curvature of the leaves vanishes. For geometry of foliations, see for instance
[18] or Section 2 below. For the definition of transverse vector field, see [12] or
Section 2 below. First, we observe that an integral similar to (1.5) is invariant in a
basic conformal class.

Theorem 1.1. Let Y be a transverse conformal vector field on the minimal Rie-
mannian foliation (M,F , g0). Then the integral

(1.7)

∫
M

Y (RT
gT )dμg

is independent of the choice of g ∈ [g0]B.

Without the assumption that the Riemannian foliation (M,F , g0) is minimal,∫
M

Y (RT
gT )dμg may depend on g ∈ [g0]B.
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It is easy to see that invariant (1.7) is an obstruction of the following transverse
Yamabe problem.

Transverse Yamabe problem. Let (M,F , g0) be a Riemannian foliation with a
bundle-like metric g0. Does there exist any gT ∈ [gT0 ]B such that

RT
gT = const.?

This is a natural generalization of the ordinary Yamabe problem, which was
resolved by Yamabe, Trudinger, Aubin and finally by Schoen. The resolution of
the Yamabe problem is a milestone of geometric analysis. An equivariant version of
the Yamabe problem has been studied by Hebey and Vaugon [11]. Very recently, a
fully nonlinear Yamabe type problem has been studied by Viaclovsky [20], Chang-
Gursky-Yang and many other mathematicians. See the survey of Viaclovsky [19].
For further study of the ordinary Yamabe problem, see the survey of Brendle and
Marques [4].

It is clear that the invariant (1.7) is an obstruction of the transverse Yamabe
problem, at least for minimal foliations, which is the most interesting case: if there is
a solution, then invariant (1.7) must vanish. Unlike the ordinary Yamabe problem,
now invariant (1.7) is not a trivial invariant.

Theorem 1.2. There are examples of minimal Riemannian foliation of codimen-
sion q = 2 with a transverse conformal vector field Y such that invariant (1.7)
does not vanish. Hence on such a Riemannian foliation there is no solution for the
transverse Yamabe problem.

The examples come from our study of 3-dimensional Sasaki-Ricci flow in [22].
For the Sasaki-Ricci flow see [17].

However, for higher codimension (q > 2), this invariant still vanishes, though we
believe that in general there exist obstructions for the transverse Yamabe problem.

When the leaves of a Riemannian foliation (M,F , g0) are all compact, the leaf
space with the induced metric from g0 is a Riemannian orbifold. Moreover, its
scalar curvature is exactly the transverse scalar curvature. Hence, in this case
the transverse Yamabe problem is equivalent to the Yamabe problem on orbifolds,
which has been studied by Akutagawa and Botvinnik in [2] and [1]. Very recently,
Viaclovsky [20] gave interesting examples of a 4-dimensional orbifold, on which the
orbifold Yamabe problem has no solution. It is an interesting and natural question
whether one can find a similar obstruction for the orbifold Yamabe problem. Our
results can only provide an obstruction for 2-dimensional orbifolds. The nonexis-
tence of solutions to the orbifold Yamabe problem on (bad) 2-dimensional orbifolds
follows from the result of Langfang Wu in [24].

The paper is organized as follows. In Section 2, we first provide preliminaries on
Riemannian foliation and the transverse Yamabe problem. Then we show the con-
formal invariance of (1.7). In Section 3 we provide examples of minimal Riemannian
foliation of codimension 2 with nonvanishing (1.7).

2. A conformal integral invariant

In this section we show that on a minimal foliation (M,F , g0) with a transverse
conformal vector field Y , the integral (1.7) is independent of the choice of g ∈ [g0]B.
If in addition the codimension of the foliation is greater than or equal to 3, we show
that (1.7) is equal to zero for g ∈ [g0]B .
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Let (M,F) be a closed manifold with a foliation F of codimension q. Let L
denote the integrable subbundle given by F and ν(F) = TM/L. We denote the
quotient map by π : TM → ν(F). Any Riemannian metric g on M provides a
splitting of the exact sequence of bundles

0 → L → TM → ν(F) → 0

and an isomorphism of bundles σ : ν(F) → L⊥ satisfying π◦σ = id. The transverse
metric gT corresponding to (M,F , g) is defined by

gT (s1, s2) = g(σs1, σs2), s1, s2 ∈ Γν(F).

The Riemannian metric g is called bundle-like if the induced transverse metric
gT is holonomy invariant; i.e., Lξg

T = 0 for any ξ ∈ ΓL. A foliation (M,F)
with a bundle-like metric g is called a Riemannian foliation. For the geometry of
Riemannian foliations, see [18].

Let (M,F , g) be a Riemannian foliation (i.e., g is a bundle-like metric) and
∇M be the Levi-Civita connection of (M, g). We denote the transverse Livi-Civita
connection on (ν(F), gT ) by ∇. This connection is defined by

∇Xs :=

⎧⎨
⎩

π[X,Ys], if X ∈ ΓL,

π(∇M
X Ys), if X ∈ ΓL⊥,

where s ∈ Γν(F) and Ys = σs.
The transverse curvature operator is then defined by

RT (X,Y )s = ∇X∇Y s−∇Y ∇Xs−∇[X,Y ]s.

Let {ei}qi=1 be a local orthonormal frame on (L⊥, g|L⊥). The transverse Ricci
curvature and the transverse scalar curvature are defined respectively by

RicT (X,Y ) = gT (RT (X, ei)(πei), πY )

and

RT = RicT (ej , ej).

Both RicT and RT are well-defined; i.e., they are independent of the choice of the
local frame {ei}qi=1. Note that RT is basic; i.e., ξ(RT ) = 0 for any ξ ∈ ΓL.

We denote by τ the mean curvature vector field of leaves. That is

τ = (∇M
ξαξα)

⊥,

where {ξα} is a local orthonormal frame of L and X⊥ denotes the projection of X
to L⊥. A Riemannian foliation (M,F , g) is said to be minimal if τ = 0.

Let V (F) denote the space of all infinitesimal automorphisms of F , i.e.,

V (F) = {Y ∈ Γ(TM)| LY ξ ∈ ΓL, ∀ξ ∈ ΓL}.

The space of transverse vector fields is defined by

V (F) = {Y := π(Y )|Y ∈ V (F)}.

A function f is called basic if df(ξ) = 0 for any ξ ∈ ΓL. If a vector field Y ∈ V (F)
satisfies

(2.1) LY g
T = 2fY g

T
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for a basic function fY depending on Y , we call Y (or Y ) a transverse conformal

field. For a transverse conformal field Y we have fY = 1
qdiv

∇(Y ), where

div∇(Y ) = gT (∇eiY , πei)

is the transverse divergence of Y with respect to ∇. The following transverse
divergence theorem can be found in [18]. See also [25].

Lemma 2.1. Let (M,F , g) be a Riemannian foliation and X ∈ V (F). Then∫
M

div∇(X)dμg =

∫
M

gT (X, πτ )dμg.

The basic Laplacian ΔB acting on a basic function u is defined by

ΔBu = div∇(∇Mu)− τ (u).

Lemma 2.2. Let (M,F , g) be a Riemannian foliation of codimension q. Assume
that Y is a transverse conformal vector field. Then

(2.2)
q

2
Y (RT ) = −(q − 1)(ΔB + τ )div∇(Y )−RTdiv∇(Y ).

Proof. For the proof of formula (2.2) see for instance [12]. The classical version of
(2.2) can be found in [15]. �

Let (M,F , g0) be a Riemannian foliation with mean curvature vector field τ0.
Recall that any g ∈ [g0]B, defined in (1.6), induces a conformal transverse metric
gT ∈ [gT0 ]B . Let g = g0|L + eug0|L⊥ be a metric in the basic conformal class
[g0]B . Then (M,F , g) is a Riemannian foliation with mean curvature vector field
τ = e−uτ0. Hence the condition of minimal foliation (i.e., τ = 0) is conformally
invariant. A direct computation gives the relationship of RT

gT and RT
gT
0

(2.3) RT
gT = e−u[−(q − 1)(Δ0

B + τ0)u− (q − 1)(q − 2)

4
|∇u|2gT

0
+RT

gT
0
].

It follows that solving the transverse Yamabe problem is equivalent to solving the
equation

(2.4) −(q − 1)(Δ0
B + τ0)u− (q − 1)(q − 2)

4
|∇u|2gT

0
+RT

gT
0
= ceu.

When the foliation is minimal, i.e., τ0 = 0, the transverse Yamabe equation (2.4)
is the Euler-Lagrange equation of the functional

(2.5) J(g) =

∫
M

RT
gT dμg

(vol(g))
q−2
q

, if q > 2,

and

(2.6) J2(g) =

∫
M

(−1

2
uΔ0

Bu+ uRT
gT
0
)dμg0 −

∫
M

RT
gT
0
dμg0 log

∫
M

eudμg0 , if q = 2.

Recall g = g0|L + eug0|L⊥ . Note that when q = 2, from (2.3) it is easy to see that∫
M

RT
gT dμg =

∫
M

RT
gT
0
dμg0 for any g ∈ [g0]B .

If τ0 �= 0, equation (2.4) could be not a variational problem. Therefore we have
first restricted ourselves to the case of minimal Riemannian foliation in our study
of the transverse Yamabe problem [23]. From now on we consider only minimal
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Riemannian foliations. Assume that Y is a transverse conformal vector field. We
define

(2.7) IY : [g0]B → R, IY (g) =

∫
M

Y (RT
gT )dμg.

Theorem 2.3. Let (M,F , g0) be a minimal Riemannian foliation and Y be a
transverse conformal vector field. Then IY (g) is independent of the choice of g ∈
[g0]B.

Proof. Let gT be any transverse metric in [gT0 ]B . Let gT (s) = esψgT , where ψ is
a basic function. Let g(s) ∈ [g0]B be the bundle-like metric inducing gT (s). We
denote by RT the transverse curvature of gT .

It suffices to show that d
ds |s=0IY (g(s)) = 0. Note that (M,F , g0) is a minimal

Riemannian foliation, as is (M,F , g). Hence from (2.3) we have

RT
gT (s) = e−sψ[−(q − 1)sΔBψ − (q − 1)(q − 2)

4
s2|∇ψ|2gT + RT ]

and

dμg(s) = e
qsψ
2 dμg.

It follows that

d

ds
|s=0IY (g(s)) =

∫
M

(Y [−ψRT − (q − 1)ΔBψ] +
q

2
ψY (RT ))dμg

=

∫
M

[(
q

2
− 1)ψY (RT )− RTY (ψ)− (q − 1)YΔBψ]dμg.

By the transverse divergence theorem, we have∫
M

−RTY (ψ)dμg = −
∫
M

[div∇(ψRTY )− ψY (RT )− ψRTdiv∇(Y )]dμg

=

∫
M

ψ[Y (RT ) +RTdiv∇(Y )]dμg

and ∫
M

Y (ΔBψ)dμg =

∫
M

[div∇(ΔBψY )− div∇(Y )ΔBψ]dμg

= −
∫
M

ψΔB(div
∇Y )dμg.

Hence we get

d

ds
|s=0IY (g(s)) =

∫
M

ψ[
q

2
Y (RT ) +RTdiv∇(Y ) + (q − 1)ΔB(div

∇Y )]dμg.

The proof is then completed by formula (2.2). �

The proof given in [5] (see also [9]) for the invariant of (1.5) would provide
another proof of this theorem. For foliation of higher codimension q > 2, this
invariant is still trivial.

Theorem 2.4. Let (M,F , g0) be a minimal Riemannian foliation of codimension
q ≥ 3 and Y be a transverse conformal vector field. Then for any g ∈ [g0]B, we
have IY (g) = 0.
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Proof. Let g ∈ [g0]B , which induces gT . Integrating (2.2) and using the transverse
divergence theorem, we get

(
q

2
− 1)

∫
M

Y (RT
gT )dμg = 0.

Hence, I = 0. �

3. Examples with nonvanishing IY

In this section we compute the invariant, defined in (2.7), for a family of codi-
mension 2 minimal Riemannian foliations. This family is given by the weighted
Sasakian structures on the unit sphere in C2. It is well-known in Sasakian geom-
etry that a Sasakian manifold admits a minimal Riemannian foliation structure.
For the weighted Sasakian structures on the unit sphere in C

2, one may refer to
[7, 10, 22].

On the unit sphere S3 in C2 there is a canonical Sasakian structure described as
below. Let

η =
2∑

i=1

(xidyi − yidxi)

be the canonical contact form on S3. It uniquely determines a vector field ξ by
η(ξ) = 1 and iξdη = 0. The vector field ξ is called the Reeb vector field and

ξ =
2∑

i=1

(xi ∂

∂yi
− yi

∂

∂xi
).

The Reeb vector field ξ gives rise to a foliation Fξ on S3. The distribution D := ker η
is called the contact distribution. Let φ be the linear map which satisfies φξ = 0,
and let φ|D be the restriction of the canonical complex structure of C2. Let

(3.1) g = dη ◦ (Id⊗ φ) + η ⊗ η.

Then g is a bundle-like metric for the foliation Fξ and D = L⊥
ξ , where Lξ is the

integrable line bundle given by Fξ. In fact g is the standard metric on the unit
sphere and RT = 8.

For a given pair (a1, a2) of positive numbers, the weighted Sasakian structure S3a
on the unit sphere S

3 is defined as follows. Let

ηa = σ−1
2∑

i=1

(xidyi − yidxi) = σ−1η,

where σ = a1|z1|2 + a2|z2|2. The contact form ηa uniquely determines the Reeb
vector field ξa by ηa(ξa) = 1 and iξadηa = 0. It is trivial to see that ker ηa = ker η =
D and easy to check that

ξa =

2∑
i=1

ai(x
i ∂

∂yi
− yi

∂

∂xi
).

The line bundle Lξa , spanned by the Reeb vector field ξa, defines the characteristic
foliation structure Fξa of S3a. Let φa be the linear map which satisfies φaξa = 0 and
φa|D = φ|D, and let

(3.2) ga = dηa ◦ (Id⊗ φa) + ηa ⊗ ηa.
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Then (S3,Fξa , ga) is a Sasakian manifold, and hence its foliation is minimal. See
[10].

If a1

a2
( �= 1) is a rational number, the leaf space of Fξa is the orbifold P

1
C
(a1, a2),

i.e., the weighted projective line. Any holonomy invariant transverse metric gT on
(S3,Fξa) induces naturally an orbifold metric on P1

C
(a1, a2), and the scalar curva-

ture, of the orbifold metric is exactly the transverse scalar curvature RT
gT . It was

known that P
1
C
(a1, a2) admits no orbifold metric of constant scalar curvature; see

[24]. In [3] the Futaki invariant of P1
C
(a1, a2) was shown to be nonvanishing.

If a1

a2
is an irrational number, the leaf space of Fξa has no manifold structure. In

the following we show that the invariant I is zero if and only if a1 = a2; i.e., the
leaf space is the standard sphere. This phenomenon is very similar to the existence
of S1-equivariant harmonic maps from S3 into S2 in [21].

We have the following two (real) tangent vector fields on S
3:

Z1 = σ−1(−i|z2|2z1, i|z1|2z2), Z2 = σ−1(|z2|2z1,−|z1|2z2),
where z1 denotes the vector field x1 ∂

∂x1 + y1 ∂
∂y1 and iz1 denotes the vector field

−y1 ∂
∂x1 + x1 ∂

∂y1 . A direct computation gives

Zi ∈ ker ηa, Z2 = φaZ1, [ξa, Zi] = 0, [Z1, Z2] = −2σ−3|z1|2|z2|2ξa.

Proposition 3.1. The vector field Z2 is a transverse conformal vector field on
(S3,Fξa , ga).

Proof. By the fact that [ξa, Z2] = 0, we see that Z2 ∈ V (Fξa). Note that g, given
by (3.1), is the standard metric on S3 and Z1, Z2 ∈ D. Then by the definition (3.2)
of ga, we have

gTa (Zi, Zj) = σ−1gT (Zi, Zj) = σ−1g(Zi, Zj) = σ−3|z1|2|z2|2δij .
One can then verify that LZ2

gTa = 2fZ2
gTa with

fZ2
=

1

2
Z2 log(σ

−3|z1|2|z2|2). �

Proposition 3.2. The transverse scalar curvature of (S3,Fξa , ga) is

RT (gTa ) = −24(a1 − a2)
2σ−1|z1|2|z2|2 − 16(a1 − a2)(|z1|2 − |z2|2) + 8σ.

Proof. Let Z = Z1 − iZ2. We have φZ = iZ and gTa (Z,Z) = 2σ−3|z1|2|z2|2, where
Z denotes the complex conjugate of Z. The transversal scalar curvature follows
from the formula

RT (gTa ) = −2[gTa (Z,Z)]
−1ZZ log[gTa (Z,Z)].

We notice that the transverse scalar curvature of S3a was also given in [10] in a
slightly different form. �

Proposition 3.3. On the minimal Riemannian foliation (S3,Fξa , ga), we have

IZ2
(g̃) = −8π2 a

2
1 − a22
a21a

2
2

, ∀g̃ ∈ [ga]B .

Proof. By Theorem 2.3, it suffices to show that∫
S3

Z2(R
T
gT
a
)dμga = −8π2 a

2
1 − a22
a21a

2
2

.
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It follows from Proposition 3.2 that

Z2(R
T
gT
a
) = −48(a1 − a2)a1a2σ

−3|z1|2|z2|2.

Let t = |z1|2, s = (a1 − a2)t+ a2 = σ. Then

Z2(R
T
gT
a
) = 48(a1 − a2)

−1a1a2s
−3(s− a1)(s− a2).

Note that the volume element with respect to ga is

dμga = ηa ∧ dηa = σ−2η ∧ dη = σ−2dμg,

where dμg is the standard volume element of S3. For each t = |z1|2 ∈ (0, 1), we

have a torus {(z1, z2) : |z1|2 = t, |z2|2 = 1 − t} which has area (2π
√
t)(2π

√
1− t)

with respect to the standard metric g on S3. Note that

ξ, (|z1||z2|)−1σZ1, (|z1||z2|)−1σZ2,

form an orthonormal frame of (S3, g). It is easy to see that ξ|z1|2 = Z1|z1|2 = 0. It
implies that

|∇|z1|2|g = (|z1||z2|)−1σ|Z2(|z1|2)| = 2|z1||z2|.
Then by the coarea formula, we have∫

S3

Z2(R
T
gT
a
)ηa ∧ dηa =

∫ 1

0

Z2(R
T
gT
a
)σ−2(2π

√
t)(2π

√
1− t)

dt

|∇|z1|2|g

=

∫ 1

0

Z2(R
T
gT
a
)σ−22π2dt

=

∫ a1

a2

96π2(a1 − a2)
−2a1a2s

−5(s− a1)(s− a2)ds

= −8π2 a
2
1 − a22
a21a

2
2

. �

Therefore the invariant vanishes if and only if a1 = a2. This also gives us the
proof of Theorem 1.2.
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tielles d’origine géométrique. Lecture Notes in Math. 1209, 100–108, Springer, Berlin (1986).
MR863748 (88b:58145)

[6] Bourguignon, J. P.; Ezin, J. P., Scalar curvature functions in a conformal class of metrics
and conformal transformations. Trans. Amer. Math. Soc. 301 (1987) 723–736. MR882712
(88e:53054)

http://www.ams.org/mathscinet-getitem?mr=1957657
http://www.ams.org/mathscinet-getitem?mr=1957657
http://www.ams.org/mathscinet-getitem?mr=2144249
http://www.ams.org/mathscinet-getitem?mr=2144249
http://www.ams.org/mathscinet-getitem?mr=863748
http://www.ams.org/mathscinet-getitem?mr=863748
http://www.ams.org/mathscinet-getitem?mr=882712
http://www.ams.org/mathscinet-getitem?mr=882712


1414 GUOFANG WANG AND YONGBING ZHANG

[7] Boyer, C. P.; Galicki, K., Sasakian geometry. Oxford Mathematical Monographs. Oxford
University Press, Oxford (2008). MR2382957 (2009c:53058)

[8] Futaki, A., An obstruction to the existence of Einstein Kähler metrics. Invent. Math. 73
(1983), 437–443. MR718940 (84j:53072)

[9] Futaki, A., Kähler-Einstein metrics and integral invariants. Lecture Notes in Mathematics
1314. Springer-Verlag, Berlin (1988). MR947341 (90a:53053)

[10] Gauduchon, P.; Ornea, L., Locally conformally Kähler metrics on Hopf surfaces. Ann. Inst.

Fourier (Grenoble) 48 (1998), 1107–1127. MR1656010 (2000g:53088)
[11] Hebey, E.; Vaugon, M., Le problème de Yamabe équivariant. Bull. Sci. Math. 117 (1993),
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