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POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC

EQUATIONS WITH SMALL PERTURBATIONS

RYUJI KAJIKIYA

(Communicated by Walter Craig)

Abstract. In this paper, we study the semilinear elliptic equation with a
small perturbation. We assume the main term in the equation to have a
mountain pass structure but do not suppose any condition for the perturbation
term. Then we prove the existence of a positive solution. Moreover, we prove
the existence of at least two positive solutions if the perturbation term is
nonnegative.

1. Introduction and main results

We prove the existence of positive solutions for the semilinear elliptic equation

−Δu = f(x, u) + λg(x, u) in Ω,(1.1)

u = 0 on ∂Ω,(1.2)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω, N ≥ 1 and f(x, u),

g(x, u) are continuous on Ω× [0,∞) and λ is a real parameter whose absolute value
is small. We assume a condition on f(x, u) such that (1.1), (1.2) with λ = 0 has
a mountain pass structure, and therefore it has a positive solution when λ = 0.
The most typical nonlinear term is f(x, u) = a(x)up or f(x, u) = a(x)up + b(x)uq,
where a, b ∈ C(Ω) and a(x) or b(x) may change its sign. The purpose of this
paper is to prove the existence of a positive solution for |λ| small enough under the
mountain pass assumption on f(x, u) only without any conditions on g(x, u). The
nonlinear term f(x, u) = a(x)up was studied by Afrouzi and Brown [1], Alama and
Tarantello [2], Brown and Zhang, [4], Li and Wang [6] and the author [5]. However
the assumptions in this paper are more general than those of the papers above. We
emphasize that our theorem does not need any assumptions on g(x, u). We assume
the conditions below.

(f1) There exist positive constants p, C such that 1 < p < ∞ if N = 1, 2 and
1 < p < (N + 2)/(N − 2) if N ≥ 3 and

|f(x, s)| ≤ C(sp + 1) for s ≥ 0, x ∈ Ω.

(f2) There exist constants α > 2, θ ∈ [0, 2), C > 0 such that

αF (x, s)− sf(x, s) ≤ C|s|θ + C for s ≥ 0, x ∈ Ω,
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where

F (x, s) :=

∫ s

0

f(x, t)dt.

(f3) There exist x0 ∈ Ω, δ0 > 0 such that

lim
s→∞

(
min

|x−x0|≤δ0
F (x, s)/s2

)
= ∞.

(f4) lim sups→0+

(
maxx∈Ω f(x, s)/s

)
< μ1,

where μ1 denotes the first eigenvalue of the Dirichlet Laplacian in Ω.

(f5) lim infs→0+

(
minx∈Ω f(x, s)/s

)
> −∞.

Assumptions (f1)–(f4) guarantee that f(x, u) has a mountain pass structure,
and (f5) ensures that a mountain pass solution is strictly positive. For any g(x, u)
and |λ| small enough, we prove the existence of a positive solution. Moreover, if
g(x, 0) ≥ 0, we show the existence of another small positive solution.

Theorem 1.1. Let f(x, s) and g(x, s) be continuous on Ω × [0,∞). Suppose that
(f1)–(f5) hold. Then the following assertions hold.

(i) There exists a λ0 > 0 such that (1.1), (1.2) have a positive solution uλ

when |λ| ≤ λ0. Furthermore, for any sequence λj converging to zero,
along a subsequence uλj

, converges to u0 in W 2,q(Ω) for all q ∈ [1,∞),
where u0 is a mountain pass solution of (1.1), (1.2) with λ = 0 and where
W 2,q(Ω) denotes the Sobolev space.

(ii) If g(x, 0) ≥ 0, �≡ 0 in Ω, then (1.1), (1.2) have another nonnegative solution
vλ for λ > 0 small enough such that 0 ≤ vλ(x) < uλ(x) and vλ → 0 in
W 2,q(Ω) as λ → 0 for all q ∈ [1,∞). Moreover, if

(1.3) lim inf
s→0+

(
min
x∈Ω

(g(x, s)− g(x, 0))/s

)
> −∞,

then each vλ is strictly positive.

We give sufficient conditions for (f3)–(f5). Assumptions (f4) and (f5) are fulfilled
if

(1.4) lim
s→0+

f(x, s)/s = 0 uniformly on Ω.

Assumption (f3) holds if f(x, s) is superlinear at s = ∞ in a small neighborhood of
x0, i.e.,

(1.5) lim
s→∞

(
min

|x−x0|≤δ0
f(x, s)/s

)
= ∞.

There are many examples of f(x, s) satisfying our assumptions. An easy example
of the sign-changing nonlinear term is f(x, s) = a(x)sp+ b(x)sq, where a, b ∈ C(Ω),
1 < q < p if N = 1, 2 and 1 < q < p < (N + 2)/(N − 2) if N ≥ 3. The function
f(x, s) satisfies (f1)–(f5) if either (i) or (ii) below holds:

(i) a(x) may change its sign, but a(x0) > 0 at some x0 ∈ Ω and b(x) ≤ 0 in
Ω.

(ii) a(x) ≥ 0, �≡ 0 in Ω and b(x) is any function.
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Indeed, it is easy to verify (f1), (1.4) and (1.5). Let us check (f2). In Case (i), we
choose α = p+ 1 so that

(p+ 1)F (x, s)− sf(x, s) =
p− q

q + 1
b(x)sq+1 ≤ 0.

In Case (ii), we choose α = q + 1 so that

(q + 1)F (x, s)− sf(x, s) =
q − p

p+ 1
a(x)sp+1 ≤ 0.

Thus (f2) holds.

2. Proof of the Theorem

We shall prove Theorem 1.1. Our approach is based on the mountain pass lemma
and the maximum principle. We always assume (f1)–(f5). Assumptions (f4) and
(f5) imply f(x, 0) = 0. Throughout the paper, we put f(x, s) = 0 for s < 0, and
hence f(x, s) is defined on Ω× R and continuous. Moreover, (f4) and (f5) are still
valid as s → 0 instead of s → 0+ and (f2) holds for all s ∈ R.

We call u a solution of (1.1), (1.2) if it belongs to H1
0 (Ω) ∩ L∞(Ω) and satisfies

(1.1) in the distribution sense. By the bootstrap argument with the elliptic regu-
larity theorem, u belongs to W 2,q(Ω) for all q ∈ [1,∞) and satisfies (1.1) a.e. in Ω.
Especially, u lies in C1(Ω).

Lemma 2.1. Any nontrivial solution u of (1.1), (1.2) with λ = 0 is strictly positive
and ∂u/∂ν < 0 on ∂Ω. Here ∂/∂ν denotes the outward normal derivative.

Proof. Let u be a nontrivial solution of (1.1), (1.2) with λ = 0. Put

D := {x ∈ Ω : u(x) < 0}.
Assume that D �= ∅. By the extension of f(x, s) on s ≤ 0,

−Δu = f(x, u) = 0 in D, u = 0 on ∂D.

Thus u ≡ 0 in D, a contradiction. Therefore D must be empty; i.e., u ≥ 0 in
Ω. Put A := ‖u‖∞. By (f5), there exists a C > 0 such that f(x, s) ≥ −Cs for
0 ≤ s ≤ A and x ∈ Ω. This inequality gives us

(C −Δ)u = Cu+ f(x, u) ≥ 0 in Ω.

By the Hopf maximum principle, u is strictly positive and ∂u/∂ν < 0 on ∂Ω. �

For (1.1) with λ = 0, we define the Lagrangian functional I0(u) by

I0(u) :=

∫
Ω

(
1

2
|∇u|2 − F (x, u)

)
dx,

where F (x, u) is defined in (f2). In what follows, ‖ · ‖p denotes the Lp(Ω) norm.
H1

0 (Ω) stands for the usual Sobolev space equipped with the norm ‖u‖H1
0 (Ω) :=

‖∇u‖2. Because of (f1), I0 is well defined in H1
0 (Ω) and becomes a C1 functional.

Lemma 2.2. I0 satisfies the Palais-Smale condition.

Proof. Let un be any sequence in H1
0 (Ω) such that I0(un) is bounded and ‖I ′0(un)‖

converges to zero. From an easy calculation, we see that

I ′0(u)u =

∫
Ω

(
|∇u|2 − uf(x, u)

)
dx,
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which shows that

αI0(un)− I ′0(un)un

=
α− 2

2
‖∇un‖22 −

∫
Ω

(αF (x, un)− unf(x, un)) dx.(2.1)

Hereafter we assume θ ≥ 1 in (f2) because in case θ < 1 we replace θ by 1 and C by
a larger constant. Then the norm ‖ · ‖θ makes sense. Since |I0(un)| and ‖I ′0(un)‖
are bounded, we use (f2) to get a constant C > 0 such that

α− 2

2
‖∇un‖22 = αI0(un)− I ′0(un)un +

∫
Ω

(αF (x, un)− unf(x, un)) dx

≤ C + C‖∇un‖2 + C‖un‖θθ
≤ C + C‖∇un‖2 + C ′‖∇un‖θ2,

where we have used the Sobolev embedding. Since θ < 2, ‖∇un‖2 is bounded.
Then a subsequence of un weakly converges in H1

0 (Ω). This convergence becomes
a strong one, which can be proved in the standard method. See [3, 7, 8, 9] for the
details. The proof is complete. �

Lemma 2.3. I0 has a mountain pass geometry; i.e., there exist u1 ∈ H1
0 (Ω) and

constants r, ρ > 0 such that I0(u1) < 0, ‖∇u1‖2 > r and

(2.2) I0(u) ≥ ρ when ‖∇u‖2 = r.

Proof. Recall that (f4) is still valid as s → 0 instead of s → 0+. Then we have
s0 > 0 and μ ∈ (0, μ1) such that

f(x, s)/s < μ for |s| < s0,

which implies that

F (x, s) ≤ (μ/2)s2 for |s| ≤ s0.

This inequality with (f1) shows that

F (x, s) ≤ (μ/2)s2 + C|s|p+1 for s ∈ R,

with some C > 0. Since μ1 is the first eigenvalue of −Δ, it follows that ‖∇u‖22 ≥
μ1‖u‖22 for u ∈ H1

0 (Ω). Then I0 is estimated as

I0(u) ≥
1

2
‖∇u‖22 −

μ

2
‖u‖22 − C‖u‖p+1

p+1 ≥ μ1 − μ

2μ1
‖∇u‖22 − C ′‖∇u‖p+1

2 .

This shows the existence of r and ρ satisfying (2.2). Let x0, δ0 be as in (f3). Let
φ be a function such that φ ∈ C1

0 (Ω), φ ≥ 0, φ �≡ 0 and the support of φ is in
B(x0, δ0). Here B(x0, δ0) is a ball centered at x0 with radius δ0. By (f3),

min{F (x, s)/s2 : x ∈ B(x0, δ0)} → ∞ as s → ∞.

Put a := ‖φ‖∞/2 and

D := {x ∈ B(x0, δ0) : φ(x) ≥ a}.
For t ≥ 0, we compute

I0(tφ) = (t2/2)‖∇φ‖22 −
∫
Ω

F (x, tφ)dx

≤ (t2/2)‖∇φ‖22 − t2
∫
D

F (x, tφ)

t2φ2
φ2dx → −∞ as t → ∞.
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We fix t > 0 so large that I0(tφ) < 0 and t‖∇φ‖2 > r. Then u1 := tφ satisfies the
assertion of the lemma. �

For u1 in Lemma 2.3, we define

Γ := {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = u1},

c0 := inf
γ∈Γ

max
0≤t≤1

I0(γ(t)).

Lemma 2.4. c0 is a critical value of I0.

Proof. This is a well-known mountain pass lemma. For the proof, we refer the
reader to [3, 7, 8, 9]. �

We call u a mountain pass solution of I0 if I ′0(u) = 0 and I0(u) = c0. In general,
a mountain pass solution is not necessarily unique but we have an a priori estimate
for all mountain pass solutions in the next lemma.

Lemma 2.5. There exists a constant C > 0 such that ‖u‖C1(Ω) ≤ C for any

mountain pass solution u of I0.

Proof. Let u be any mountain pass solution of I0. Since I ′0(u) = 0 and I0(u) = c0,
we use (2.1) with (f2) to get

α− 2

2
‖∇u‖22 ≤ αc0 + C‖u‖θθ + C ≤ αc0 + C ′‖∇u‖θ2 + C.

This gives an a priori bound of the H1
0 (Ω) norm of u; i.e., ‖∇u‖2 ≤ C with a C > 0

independent of u. By the bootstrap argument with (f1) and the elliptic regularity
theorem, we get the upper bound of the W 2,q(Ω) norm of u for all q ∈ [1,∞).
Especially, an a priori C1(Ω) estimate of u follows. �

By Lemma 2.5, we have an M > 0 such that

(2.3) ‖u‖∞ ≤ M for any mountain pass solution u of I0.

Now, we define

g̃(x, s) =

⎧⎨
⎩

g(x, 0) if s ≤ 0,
g(x, s) if 0 ≤ s ≤ 2M,
g(x, 2M) if s ≥ 2M.

Then g̃(x, s) is continuous and bounded on Ω×R. We choose a function h ∈ C∞
0 (R)

such that 0 ≤ h ≤ 1 in R, h(s) = 1 for |s| ≤ 2M and h(s) = 0 for |s| ≥ 4M . We
define

Iλ(u) :=

∫
Ω

(
1

2
|∇u|2 − F (x, u)− λh(u)G̃(x, u)

)
dx,

G̃(x, u) :=

∫ u

0

g̃(x, s)ds.

A critical point of Iλ is a solution of

(2.4) −Δu = f(x, u) + λh(u)g̃(x, u) + λh′(u)G̃(x, u) in Ω,

with u = 0 on ∂Ω. Our plan to prove Theorem 1.1 is as follows. First, we find a
mountain pass solution uλ of Iλ. Next, we prove that 0 < uλ(x) ≤ 2M for |λ| small
enough. Then h′(uλ) = 0, h(uλ) = 1, g̃(x, uλ) = g(x, uλ) and therefore uλ becomes
a solution of (1.1), (1.2).
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Using the same argument as in Lemma 2.2 with the fact that h(s)G̃(x, s) and
its partial derivative on s are bounded, we get the next lemma.

Lemma 2.6. For each λ ∈ R, Iλ satisfies the Palais-Smale condition.

Lemma 2.7. There exists a λ0 > 0 such that Iλ has a mountain pass geometry
when |λ| ≤ λ0.

Proof. Since h(s)G̃(x, s) is bounded on Ω× R, we have

(2.5) I0(u)− |λ|C ≤ Iλ(u) ≤ I0(u) + |λ|C for u ∈ H1
0 (Ω),

where C > 0 is independent of λ and u. Let r, ρ and u1 be as in Lemma 2.3. For
|λ| small enough, it follows that

Iλ(u1) ≤ I0(u1) + |λ|C < 0,

(2.6) Iλ(u) ≥ ρ− |λ|C ≥ ρ/2 when ‖∇u‖2 = r.

The proof is complete. �
We define the mountain pass value cλ of Iλ by

cλ := inf
γ∈Γ

max
0≤t≤1

Iλ(γ(t)).

Then cλ → c0 as λ → 0 by (2.5).

Lemma 2.8. Let λn ∈ R be a sequence converging to zero and un a mountain pass
solution of Iλn

. Then a subsequence of un converges to a limit u0 in W 2,q(Ω) for
all q ∈ [1,∞), where u0 is a mountain pass solution of I0.

Proof. By definition, Iλn
(un) = cλn

, I ′λn
(un) = 0 and hence un satisfies (2.4) with

λ replaced by λn. Using the same argument as in Lemma 2.5 with the boundedness
of cλn

, we can prove that the W 2,q(Ω) norm of un is bounded for any q ∈ [1,∞).
By the compact embedding, a subsequence of un converges to a limit u0 in C1(Ω).
Then u0 satisfies that I0(u0) = c0 and I ′0(u0) = 0, i.e., that u0 is a mountain pass
solution of I0. The right-hand side of (2.4) with u = un and λ = λn converges to
that with u = u0 and λ = 0 uniformly on x ∈ Ω. The elliptic regularity theorem
again ensures that un converges to u0 strongly in W 2,q(Ω) for all q ∈ [1,∞). �

We shall prove the positivity and a priori estimate of mountain pass solutions
for Iλ. To this end, for δ > 0, we put

Ωδ := {x ∈ Ω : dist(x, ∂Ω) < δ},
where dist(x, ∂Ω) denotes the distance from x to ∂Ω.

Lemma 2.9. There exist constants λ0, δ, a, b > 0 such that any mountain pass
solution u of Iλ with |λ| ≤ λ0 satisfies (i) and (ii) below.

(i) 0 < u(x) ≤ 2M in Ω, where M has been defined by (2.3).
(ii) ∂u/∂ν < −a in Ωδ and u(x) > b in Ω \ Ωδ. Here ∂/∂ν is well defined

at each point in Ωδ for δ > 0 small because ∂Ω is smooth.

Proof. First, we shall prove |u(x)| ≤ 2M for |λ| > 0 small enough. Suppose that
our claim is false. Then there exist sequences λn ∈ R and un such that λn converges
to zero, un is a mountain pass solution of Iλn

and ‖un‖∞ > 2M . By Lemma 2.8,
a subsequence of un converges to a mountain pass solution u0 of I0 in C1(Ω).
Since ‖u0‖∞ ≤ M by (2.3), it follows that ‖un‖∞ < 2M for n large enough. A



POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS 1341

contradiction occurs. Thus we have ‖u‖∞ ≤ 2M . The positivity of u in (i) follows
from (ii).

Next, we shall prove that ∂u/∂ν < −a in Ωδ with some a, δ > 0 independent
of u. Suppose on the contrary that there exist λn, xn, un such that λn → 0,
dist(xn, ∂Ω) → 0, un is a mountain pass solution of Iλn

and

lim inf
n→∞

∂un(xn)/∂ν ≥ 0.

We choose a subsequence of xn which converges to a limit x0 ∈ ∂Ω. By Lemma 2.8,
a subsequence of un converges to a mountain pass solution u0 of I0 in C1(Ω). Then
∂u0/∂ν(x0) ≥ 0, a contradiction to Lemma 2.1. Thus ∂u/∂ν < −a in Ωδ with some
a, δ > 0. Fix such a δ > 0. Then by the same method as above, we can prove that
u(x) > b in Ω \ Ωδ with some b > 0. �

In Lemma 2.3, we replace r by any positive constant smaller than r. Then (2.2)
is still valid after ρ is replaced by a smaller positive constant. Hence (2.6) still holds
if |λ| is replaced by a small one. Thus the next lemma follows.

Lemma 2.10. There exists an r0 > 0 such that for any r ∈ (0, r0), there exist
constants ρ, λ′ > 0 which satisfy

Iλ(u) ≥ ρ when ‖∇u‖2 = r, |λ| < λ′.

The lemma above will be used to find a small positive solution of (1.1), (1.2).
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Choose λ0 > 0 which satisfies Lemmas 2.7 and 2.9. Let
uλ be a mountain pass solution of Iλ with |λ| ≤ λ0. Then 0 < uλ(x) ≤ 2M by
Lemma 2.9. Thus h′(uλ) = 0, h(uλ) = 1, g̃(x, uλ) = g(x, uλ) and therefore uλ

becomes a solution of (1.1), (1.2). Let λj be any sequence converging to zero. By
Lemma 2.8, a subsequence uλ′

j
converges to a mountain pass solution u0 of I0 in

W 2,q(Ω) for all q ∈ [1,∞).
We now suppose that g(x, 0) ≥ 0, g(x, 0) �≡ 0 in Ω. By (2.6), we have

inf
‖∇u‖2=r

Iλ(u) ≥ ρ/2 > 0 = Iλ(0).

Let B be the set of u ∈ H1
0 (Ω) such that ‖∇u‖2 ≤ r. Then the minimum of Iλ in

B is achieved at an interior point vλ. Indeed, choose a sequence un in B such that
Iλ(un) converges to the infimum of Iλ in B. A subsequence of un weakly converges
in H1

0 (Ω) to a point vλ in B. By the weakly lower semicontinuity of Iλ, we have

Iλ(vλ) ≤ lim inf
n→∞

Iλ(un),

which means that vλ is a minimum point of Iλ in B. Since Iλ(0) = 0, we have
Iλ(vλ) ≤ 0 < Iλ(uλ), where uλ is a mountain pass solution of Iλ. Therefore
vλ �= uλ. In the same way as in Lemma 2.5 with |λ| and r > 0 small enough, we
can prove that ‖vλ‖∞ ≤ M . Hence g̃(x, vλ) = g(x, vλ) and vλ is a solution of (1.1).
Moreover, vλ �≡ 0 because g(x, 0) �≡ 0. Thus vλ is a nontrivial solution. We shall
show that vλ(x) ≥ 0 for λ > 0. Let D be the set of x ∈ Ω such that vλ(x) < 0.
Since f(x, s) = f(x, 0) = 0 and g(x, s) = g(x, 0) ≥ 0 for s < 0, we see that for
λ > 0,

−Δvλ = f(x, vλ) + λg(x, vλ) ≥ 0 in D, vλ = 0 on ∂D,

which shows that vλ ≥ 0 in D, a contradiction to the definition of D. Thus D must
be empty, and vλ(x) ≥ 0 in Ω. By Lemma 2.10, ‖∇vλ‖2 → 0 as λ → 0. By the
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bootstrap argument, the W 2,q(Ω) norm of vλ converges to zero for all q ∈ [1,∞),
and hence vλ → 0 in C1(Ω). Then Lemma 2.9 (ii) shows that vλ(x) < uλ(x) in Ω
for λ > 0 small enough.

We suppose that (1.3) holds. Put A := ‖vλ‖∞. By (1.3), there is a C > 0 such
that

g(x, s)− g(x, 0) ≥ −Cs for 0 ≤ s ≤ A, x ∈ Ω.

Moreover, f(x, s) ≥ −Cs for 0 ≤ s ≤ A in the proof of Lemma 2.1. Then we have

((1 + λ)C −Δ)vλ = f(x, vλ) + Cvλ

+ λ(g(x, vλ)− g(x, 0) + Cvλ) + λg(x, 0)

≥ 0.

By the strong maximum principle, vλ is strictly positive. The proof is complete. �
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