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RIESZ BASES CONSISTING OF ROOT FUNCTIONS

OF 1D DIRAC OPERATORS

PLAMEN DJAKOV AND BORIS MITYAGIN

(Communicated by James E. Colliander)

Abstract. For one-dimensional Dirac operators

Ly = i

(
1 0
0 −1

)
dy

dx
+ vy, v =

(
0 P
Q 0

)
, y =

(
y1
y2

)
,

subject to periodic or antiperiodic boundary conditions, we give necessary and
sufficient conditions which guarantee that the system of root functions contains
Riesz bases in L2([0, π],C2).

In particular, if the potential matrix v is skew-symmetric (i.e., Q = −P ),

or more generally if Q = tP for some real t �= 0, then there exists a Riesz basis
that consists of root functions of the operator L.

1. Introduction

We consider one-dimensional Dirac operators of the form

(1.1) Lbc(v)y = i

(
1 0
0 −1

)
dy

dx
+ v(x) y, v =

(
0 P
Q 0

)
, y =

(
y1
y2

)
,

with periodic matrix potentials v such that P,Q ∈ L2([0, π],C2), subject to periodic
(Per+) or antiperiodic (Per−) boundary conditions (bc):

(1.2) Per+ : y(π) = y(0); Per− : y(π) = −y(0).

Our goal is to give necessary and sufficient conditions on potentials v which guaran-
tee that the system of periodic (or antiperiodic) root functions of LPer±(v) contains
Riesz bases.

The free operators L0
Per± = LPer±(0) have the discrete spectra:

Sp(L0
Per±) = Γ±, where Γ± =

{
2Z if bc = Per+

2Z+ 1 if bc = Per−

and each eigenvalue is of multiplicity 2. The spectra of perturbed operators
LPer±(v) = L0

Per± + v is also discrete; for n ∈ Γ± with large enough |n| the per-
turbed operator has “twin” eigenvalues λ±

n close to n. In the case where λ−
n �= λ+

n for
large enough |n|, could the corresponding normalized “twin eigenfunctions” form a
Riesz basis?
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Recently, in the case of Hill operators, many authors focused on this problem
(see [1, 2, 5, 6, 8, 10, 11, 12, 15, 16] and the bibliographies therein). It may happen
that λ−

n �= λ+
n for |n| > N∗ but the system of normalized eigenfunctions fails to give

a convergent eigenfunction expansion (see [2, Theorem 71]).
In the present paper we consider such a problem in the case of 1D periodic Dirac

operators. In [7], we have singled out a class of potentials v for which smoothness
could be determined only by the rate of decay of related spectral gaps γn = λ+

n −λ−
n ,

where λ±
n are the eigenvalues of L = L(v) considered on [0, π] with periodic (for

even n) or antiperiodic (for odd n) boundary conditions. This class X is determined
by the properties of the functionals β−

n (v; z) and β+
n (v, z) (see (2.8) below) to be

equivalent in the following sense: there are c, N > 0 such that

c−1|β+
n (v; z∗n)| ≤ |β−

n (v; z∗n)| ≤ c|β+
n (v; z∗n)|, |n| > N, z∗n = (λ+

n + λ−
n )/2− n.

Section 3 contains the main results of this paper. We prove that if v ∈ X,
then the system of root functions of the operator LPer±(v) contains Riesz bases in
L2([0, π],C2). Theorem 3.1, which is analogous to Theorem 1 in [6] (or Theorem 2 in
[5]), gives necessary and sufficient conditions for the existence of such Riesz bases.
Theorem 3.2 is a modification of Theorem 3.1 that is more suitable for application
to concrete classes of potentials.

Applications of Theorems 3.1 and 3.2 are given in Section 4. In particular, we
prove that if the potential matrix v is skew-symmetric (i.e., Q = −P ), then the
system of root functions of LPer±(v) contains Riesz bases in L2([0, π],C2).

2. Preliminaries

1. Let H be a separable Hilbert space, and let (eα, α ∈ I) be an orthonormal
basis in H. If A : H → H is an automorphism, then the system

(2.1) fα = Aeα, α ∈ I,

is an unconditional basis in H. Indeed, for each x ∈ H we have

x = A(A−1x) = A

(∑
α

〈A−1x, eα〉eα

)
=

∑
α

〈x, (A−1)∗eα〉fα =
∑
α

〈x, f̃α〉fα;

i.e., (fα) is a basis, its biorthogonal system is {f̃α = (A−1)∗eα, α ∈ I}, and the
series converge unconditionally. Moreover, it follows that

(2.2) 0 < c ≤ ‖fα‖ ≤ C, m2‖x‖2 ≤
∑
α

|〈x, f̃α〉|2‖fα‖2 ≤ M2‖x‖2,

with c = 1/‖A−1‖, C = ‖A‖, M = ‖A‖ · ‖A−1‖ and m = 1/M.
A basis of the form (2.1) is called a Riesz basis. One can easily see that the

property (2.2) characterizes Riesz bases; i.e., a basis (fα) is a Riesz bases if and
only if (2.2) holds with some constants C ≥ c > 0 and M ≥ m > 0. Another
characterization of Riesz bases is given by the following assertion (see [9, Chapter 6,
Section 5.3, Theorem 5.2]): If (fα) is a normalized basis (i.e., ‖fα‖ = 1 ∀α), then
it is a Riesz basis if and only if it is unconditional.
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A countable family of bounded projections {Pα : H → H, α ∈ I} is called an
unconditional basis of projections if PαPβ = 0 for α �= β and

x =
∑
α∈I

Pα(x) ∀x ∈ H,

where the series converge unconditionally in H.
If {Hα, α ∈ I} is a maximal family of mutually orthogonal subspaces of H and

Qα is the orthogonal projection on Hα, α ∈ I, then {Qα, α ∈ I} is an orthogonal
basis of projections. A family of projections {Pα, α ∈ I} is called a Riesz basis
of projections if there is an orthogonal basis of projections {Qα, α ∈ I} and an
isomorphism A : H → H such that

(2.3) Pα = AQα A−1, α ∈ I.

In view of (2.3), if {Pα} is a Riesz basis of projections, then there are constants
a, b > 0 such that

(2.4) a‖x‖2 ≤
∑
α

‖Pαx‖2 ≤ b‖x‖2 ∀x ∈ H.

For a family of projections P = {Pα, α ∈ I}, the following properties are equiv-
alent (see [9, Chapter 6]):

(i) P is an unconditional basis of projections;
(ii) P is a Riesz basis of projections.

Lemma 2.1. Let (Pα, α ∈ I) be a Riesz basis of two-dimensional projections in
a Hilbert space H, and let fα, gα ∈ RanPα, α ∈ I be linearly independent unit
vectors. Then the system {fα, gα, α ∈ I} is a Riesz basis if and only if

(2.5) κ := sup |〈fα, gα〉| < 1.

Proof. Suppose that the system {fα, gα, α ∈ I} is a Riesz basis in H. Then

x =
∑
α

(f∗
α(x)fα + g∗α(x)gα), x ∈ H,

where f∗
α, g

∗
α are the conjugate functionals. By (2.2), the one-dimensional projec-

tions

P 1
α(x) = f∗

α(x)fα, P 2
α(x) = g∗α(x)gα, α ∈ I,

are uniformly bounded. On the other hand, it is easy to see that

‖P 1
α‖2 ≥

(
1− |〈fα, gα〉|2

)−1
, ‖P 2

α‖2 ≥
(
1− |〈fα, gα〉|2

)−1
,

so (2.5) holds.
Conversely, suppose (2.5) holds. Then we have for every α ∈ I,

(1− κ)
(
|f∗

α(x)|2 + |g∗α(x)|2
)
≤ ‖Pα(x)‖2 ≤ (1 + κ)

(
|f∗

α(x)|2 + |g∗α(x)|2
)
,

which implies, in view of (2.4),

a

1 + κ
‖x‖2 ≤

∑
α

(
|f∗

α(x)|2 + |g∗α(x)|2
)
≤ b

1− κ
‖x‖2.

Therefore, (2.2) holds, which means that the system {fα, gα, α ∈ I} is a Riesz
basis in H. �
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2. We consider the Dirac operator (1.1) with bc = Per± in the domain

Dom (LPer±(v)) =

{
y =

(
y1
y2

)
: y1, y2 are absolutely continuous, y(π) = ±y(0)

}
.

Then the operator LPer±(v) is densely defined and closed; its adjoint operator is

(2.6) (LPer±(v))
∗
= LPer±(v

∗), v∗ =

(
0 Q
P 0

)
.

Lemma 2.2. The spectra of the operators LPer±(v) are discrete. There is an N =
N(v) such that the union

⋃
|n|>N Dn of the discs Dn = {z : |z−n| < 1/4} contains

all but finitely many of the eigenvalues of LPer+ and LPer− while the remaining
finitely many eigenvalues are in the rectangle RN = {z : |Re z|, |Im z| ≤ N +1/2}.

Moreover, for |n| > N , the disc Dn contains two (counted with algebraic multi-
plicity) periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ−

n , λ
+
n such

that Reλ−
n < Reλ+

n or Reλ−
n = Reλ+

n and Imλ−
n ≤ Imλ+

n .

See the details and more general results about localization of these spectra in
[13, 14] and [2, Section 1.6].

Lemma 2.2 allows us to apply the Lyapunov–Schmidt projection method and
reduce the eigenvalue equation Ly = λy for λ ∈ Dn to an eigenvalue equation in
the two-dimensional space E0

n = {L0Y = nY } (see [2, Section 2.4]). This leads to
the following (see in [2] the formulas (2.59)–(2.80) and Lemma 30).

Lemma 2.3. (a) For large enough |n|, n ∈ Z, there are functionals αn(v; z) and
β±
n (v; z), |z| < 1 such that a number λ = n + z, |z| < 1/4, is a periodic (for even

n) or antiperiodic (for odd n) eigenvalue of L if and only if z is an eigenvalue of
the matrix

(2.7)

[
αn(v; z) β−

n (v; z)
β+
n (v; z) αn(v; z)

]
.

(b) A number λ = n+z∗, |z∗| < 1
4 , is a periodic (for even n) or antiperiodic (for

odd n) eigenvalue of L of geometric multiplicity 2 if and only if z∗ is an eigenvalue
of the matrix (2.7) of geometric multiplicity 2.

The functionals αn(z; v) and β±
n (z; v) are well defined for large enough |n| by

explicit expressions in terms of the Fourier coefficients p(m), q(m), m ∈ 2Z of the
potential entries P,Q about the system {eimx, m ∈ 2Z} (see [2, Formulas (2.59)–
(2.80)]). Here we provide formulas only for β±

n (v; z):

β±
n (v; z) =

∞∑
ν=0

σ±
ν with σ+

0 = q(2n), σ−
0 = p(−2n),(2.8)

σ+
ν =

∑
j1,...,j2ν �=n

q(n+ j1)p(−j1 − j2)q(j2 + j3) . . . p(−j2ν−1 − j2ν)q(j2ν + n)

(n− j1 + z)(n− j2 + z) . . . (n− j2ν−1 + z)(n− j2ν + z)
,

σ−
ν =

∑
j1,...,j2ν �=n

p(−n− j1)q(j1 + j2)p(−j2 − j3) . . . q(j2ν−1 + j2ν)p(−j2ν − n)

(n− j1 + z)(n− j2 + z) . . . (n− j2ν−1 + z)(n− j2ν + z)
,

where j1, . . . , j2ν ∈ n+ 2Z.
Next we summarize some basic properties of αn(z; v) and β±

n (z; v).
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Proposition 2.4. (a) The functionals αn(z; v) and β±
n (z; v) depend analytically

on z for |z| ≤ 1. For |n| ≥ n0 the following estimates hold:

|αn(v; z)|, |β±
n (v; z)| ≤ C

(
E|n|(r) + 1/

√
|n|

)
, |z| ≤ 1/2;(2.9) ∣∣∣∣∂αn

∂z
(v; z)

∣∣∣∣ ,
∣∣∣∣∂β±

n

∂z
(v; z)

∣∣∣∣ ≤ C
(
E|n|(r) + 1/

√
|n|

)
, |z| ≤ 1/4,(2.10)

where r = (r(m)), r(m) = max{|p(±m)|, |q(±m)|}, C = C(‖r‖), n0 = n0(r) and

(Em(r))2 =
∑

|k|≥m

|r(k)|2.

(b) For large enough |n|, the number λ = n + z, z ∈ D = {ζ : |ζ| ≤ 1/4}, is an
eigenvalue of LPer± if and only if z ∈ D satisfies the basic equation

(2.11) (z − αn(z; v))
2 = β+

n (z; v)β−
n (z; v).

(c) For large enough |n|, the equation (2.11) has exactly two roots in D counted
with multiplicity.

Proof. The assertion (a) is proved in [2, Proposition 35]. Lemma 2.3 implies (b).
By (2.9), supD |αn(z)| → 0 and supD |β±

n (z)| → 0 as n → ∞. Therefore, (c) follows
from the Rouché theorem. �

In view of Lemma 2.2, for large enough |n| the numbers z∗n = (λ+
n + λ−

n )/2− n
are well defined. The following estimate of γn from above follows from (2.9) and
(2.10) (see [2, Lemma 40]).

Lemma 2.5. For large enough |n|,
(2.12) γn = |λ+

n − λ−
n | ≤ (1 + δn)(|β−

n (z∗n)|+ |β+
n (z∗n)|)

with δn → 0 as |n| → ∞.

Remark. Here and sometimes hereafter, we suppress the dependence on v in the
notation and write αn(z) and β±

n (z).

3. In view of the above consideration, there is n0 = n0(v) such that λ±
n , β

±
n (z)

and αn(z) are well defined for |n| > n0, and Lemmas 2.2, 2.3, 2.5 and Proposition 2.4
hold. Let us set

(2.13) M± = {n ∈ Γ± : n ∈ Γ±, |n| > n0, λ−
n �= λ+

n }.

Definition. Let X± be the class of all Dirac potentials v with the following prop-
erty: there are constants c ≥ 1 and N ≥ n0 such that

(2.14)
1

c
|β+

n (v; z∗n)| ≤ |β−
n (v; z∗n)| ≤ c |β+

n (v; z∗n)| if n ∈ M±, |n| ≥ N.

Lemma 2.6. If v ∈ X± and the set M± is infinite, then for n ∈ M± with
sufficiently large |n| we have

(2.15)
1

2
|β±

n (v; z∗n)| ≤ |β±
n (v; z)| ≤ 2|β±

n (v; z∗n)| ∀ z ∈ Kn := {z : |z − z∗n| ≤ γn}.

Proof. By Lemma 2.5, if v ∈ X±, then for n ∈ M± with large enough |n| we have
β±
n (z∗n) �= 0. In view of (2.10), if z ∈ Kn, then for large enough |n|,∣∣β±

n (z)− β±
n (z∗n)

∣∣ ≤ εn |z − z∗n| ≤ εn γn,
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where εn = C
(
E|n|(r) + 1/

√
|n|

)
→ 0 as |n| → ∞. By Lemma 2.5, for large enough

|n| we have γn ≤ 2 (|β−
n (z∗n)|+ |β+

n (z∗n)|) . Then, for n ∈ M±,∣∣β±
n (z)− β±

n (z∗n)
∣∣ ≤ 2εn

(
|β−

n (z∗n)|+ |β+
n (z∗n)|

)
≤ 2εn(1 + c)

∣∣β±
n (z∗n)

∣∣ ,
which implies, for sufficiently large |n|,

[1− 2εn(1 + c)]
∣∣β±

n (z∗n)
∣∣ ≤ ∣∣β±

n (z)
∣∣ ≤ [1 + 2εn(1 + c)]

∣∣β±
n (z∗n)

∣∣ .
Since εn → 0 as |n| → ∞, (2.15) follows. �

Proposition 2.7. Suppose that v ∈ X± and the corresponding set M± is infinite.
Then for n ∈ M± with large enough |n|,

(2.16)
2
√
c

1 + 4c

(
|β−

n (v; z∗n)|+ |β+
n (v; z∗n)|

)
≤ γn ≤ 2

(
|β−

n (v; z∗n)|+ |β+
n (v; z∗n)|

)
.

Proof. The estimate of γn from above follows from Lemma 2.5. By Lemma 2.5, for
n ∈ M± with large enough |n| we have β±

n (z∗n) �= 0. Set

tn = |β+
n (z+n )|/|β−

n (z+n )|, z+n = λ+
n − n, n ∈ M±.

By Lemma 2.6, tn is well defined for large enough |n|. By Lemma 49 in [2], there
exists a sequence (δn)n∈Z with δn → 0 as |n| → ∞ such that, for n ∈ M± with
large enough |n|,

(2.17) |γn| ≥
(

2
√
tn

1 + tn
− δn

)(
|β−

n (z∗n)|+ |β+
n (z∗n)|

)
.

In view of (2.15) in Lemma 2.6, for large enough |n| we have 1/(4c) ≤ tn ≤ 4c.
Therefore, by (2.17) it follows that

γn ≥
(

2
√
4c

1 + 4c
− δn

)(
|β−

n (z∗n)|+ |β+
n (z∗n)|

)
,

which implies (since δn → 0 as |n| → ∞) the left inequality in (2.16). This completes
the proof. �

3. Riesz bases of root functions

In view of Lemma 2.2, the Dirac operators LPer±(v) have discrete spectra; for
N large enough and n ∈ Γ± with |n| > N the Riesz projections

(3.1) S±
N =

1

2πi

∫
∂RN

(z − LPer±)
−1dz, P±

n =
1

2πi

∫
|z−n|= 1

4

(z − LPer±)
−1dz

are well defined and dim S±
N < ∞, dimP±

n = 2. Further we suppress in the notation
the dependence on the boundary conditions Per± and write SN , Pn only. By [4,
Theorem 3],

(3.2)
∑

n∈Γ±,|n|>N

‖Pn − P 0
n‖2 < ∞,

where P 0
n are the Riesz projections of the free operator. Moreover, the Bari–Markus

criterion implies (see Theorem 9 in [4]) that the spectral Riesz decompositions

(3.3) f = SNf +
∑

n∈Γ±,|n|>N

Pnf ∀f ∈ L2
(
[0, π],C2

)
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converge unconditionally. In other words, {SN , Pn, n ∈ Γ±, |n| > N} is a Riesz
basis of projections in the space L2

(
[0, π],C2

)
.

Theorem 3.1. (A) If v ∈ X±, then there exists a Riesz basis in L2([0, π],C2)
which consists of root functions of the operator LPer±(v).

(B) If v �∈ X±, then the system of root functions of the operator LPer±(v) does
not contain Riesz bases.

Remark. To avoid any confusion, let us emphasize that in Theorem 3.1 two in-
dependent theorems are stacked together: one for the case of periodic boundary
conditions Per+, and another one for the case of antiperiodic boundary conditions
Per−.

Proof. We consider only the case of periodic boundary conditions bc = Per+ since
the proof is the same in the case of antiperiodic boundary conditions bc = Per−.

(A) Fix v ∈ X+, and let N = N(v) > n0(v) be chosen so large that Lemma 2.6,
Proposition 2.7 and (3.1)–(3.3) hold for |n| > N.

If n �∈ M+, then λ∗
n = n + z∗n is a double eigenvalue. In this case we choose

f(n), g(n) ∈ Ran(Pn) so that

(3.4) ‖f(n)‖ = ‖g(n)‖ = 1, LPer+(v)f(n) = λ∗
nf(n), 〈f(n), g(n)〉 = 0.

If n ∈ M+, then λ−
n and λ+

n are simple eigenvalues. Now we choose correspond-
ing eigenvectors f(n), g(n) ∈ Ran(Pn) so that

(3.5) ‖f(n)‖ = ‖g(n)‖ = 1, LPer+(v)f(n) = λ+
n f(n), LPer+(v)g(n) = λ−

n g(n).

Let H be the closed linear span of the system

Φ = {f(n), g(n) : n ∈ Γ+, |n| > N}.
By (3.3), L2([0, π],C2) = H ⊕ Ran(SN ). Since dim SN < ∞, the theorem will be
proved if we show that the system Φ is a Riesz basis in the space H.

By (3.3), the system of two-dimensional projections {Pn : n ∈ Γ+, |n| > N} is
a Riesz basis of projections in H. By Lemma 2.1, the system Φ is a Riesz basis in
H if and only if

sup
n∈Γ+,|n|>N

|〈f(n), g(n)〉| < 1.

By (3.4), we need to consider only indices n ∈ M+. Next we show that

(3.6) sup
M+

|〈f(n), g(n)〉| < 1.

By Lemma 2.6 the quotient ηn(z) = β−
n (z)/β+

n (z) is a well-defined analytic
function on a neighborhood of the disc Kn = {z : |z − z∗n| ≤ γn}. Moreover, in
view of (2.14) and (2.15), we have

(3.7)
1

4c
≤ |ηn(z)| ≤ 4c for n ∈ M+, z ∈ Kn.

Since ηn(z) does not vanish in Kn, there is an appropriate branch Log of log z
(which depends on n) defined on a neighborhood of ηn(Kn). We set

Log (ηn(z)) = log |ηn(z)|+ iϕn(z);

then

(3.8) ηn(z) = β−
n (z)/β+

n (z) = |ηn(z)|eiϕn(z),
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so the square root
√
β−
n (z)/β+

n (z) is a well-defined analytic function on a neigh-

borhood of Kn by

(3.9)

√
β−
n (z)/β+

n (z) =
√
|ηn(z)|e

i
2ϕn(z).

Now the basic equation (2.11) splits into the following two equations:

z = ζ+n (z) := αn(z) + β+
n (z)

√
β−
n (z)/β+

n (z),(3.10)

z = ζ−n (z) := αn(z)− β+
n (z)

√
β−
n (z)/β+

n (z).(3.11)

For large enough |n|, each of the equations (3.10) and (3.11) has exactly one root
in the disc Kn. Indeed, in view of (2.10),

sup
|z|≤1/2

∣∣dζ±n /dz
∣∣ → 0 as n → ∞.

Therefore, for large enough |n| each of the functions ζ±n is a contraction on the disc
Kn, which implies that each of the equations (3.10) and (3.11) has at most one root
in the disc Kn. On the other hand, Lemma 2.2 implies that for large enough |n| the
basic equation (2.11) has exactly two simple roots in Kn, so each of the equations
(3.10) and (3.11) has exactly one root in the disc Kn.

For large enough |n|, let z1(n) (respectively z2(n)) be the only root of the equa-
tion (3.10) (respectively (3.11)) in the disc Kn. Of course, we have

either (i) z1(n) = λ−
n−n, z2(n) = λ+

n−n or (ii) z1(n) = λ+
n−n, z2(n) = λ−

n−n.

Further we assume that (i) takes place; the case (ii) may be treated in the same
way, and in both cases we have

(3.12) |z1(n)− z2(n)| = γn = |λ+
n − λ−

n |.
We set

(3.13) f0(n) = P 0
nf(n), g0(n) = P 0

ng(n).

From (3.2) it follows that ‖Pn − P 0
n‖ → 0. Therefore,

‖f(n)− f0(n)‖ = ‖(Pn − P 0
n)f(n)‖ ≤ ‖Pn − P 0

n‖ → 0, ‖g(n)− g0(n)‖ → 0,

so |〈f(n)− f0(n), g(n)− g0(n)〉| → 0. Since ‖f(n)‖2 = ‖f0(n)‖2 + ‖f(n)− f0(n)‖2
and 〈f(n), g(n)〉 = 〈f0(n), g0(n)〉+ 〈f(n)− f0(n), g(n)− g0(n)〉, we obtain

(3.14) ‖f0(n)‖, ‖g0(n)‖ → 1, lim sup
n→∞

|〈f(n), g(n)〉| = lim sup
n→∞

|〈f0(n), g0(n)〉|.

By Lemma 2.3, f0(n) is an eigenvector of the matrix(
αn(z1) β−

n (z1)
β+
n (z1) αn(z1)

)
corresponding to its eigenvalue z1 = z1(n), i.e.,(

αn(z1)− z1 β−
n (z1)

β+
n (z1) αn(z1)− z1

)
f0(n) = 0.

Therefore, f0(n) is proportional to the vector
(

z1−αn(z1)

β+
n (z1)

, 1
)T

. Taking into account

(3.8), (3.9) and (3.10) we obtain

(3.15) f0(n) =
‖f0(n)‖√
1 + |ηn(z1)|

(√
|ηn(z1)|e

i
2ϕ(z1)

1

)
.
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In an analogous way, from (3.8), (3.9) and (3.11) it follows that

(3.16) g0(n) =
‖g0(n)‖√
1 + |ηn(z2)|

(
−
√
|ηn(z2)|e

i
2ϕ(z2)

1

)
.

Now, (3.15) and (3.16) imply that

(3.17) 〈f0(n), g0(n)〉 = ‖f0(n)‖‖g0(n)‖1−
√
|ηn(z1)|

√
|ηn(z2)| eiψn√

1 + |ηn(z1)|
√
1 + |ηn(z2)|

,

where

ψn =
1

2
[ϕn(z1(n))− ϕn(z2(n))].

Next we explain that

(3.18) ψn → 0 as n → ∞.

Since ϕn = Im (Log ηn) we obtain, taking into account (3.12), that

|ϕn(z1(n))− ϕn(z2(n))| ≤ sup
[z1,z2]

∣∣∣∣ ddz (Log ηn)

∣∣∣∣ · γn,
where [z1, z2] denotes the segment with end points z1 = z1(n) and z2 = z2(n).

By (2.10) in Proposition 2.4 and (2.15) in Lemma 2.6 we estimate

d

dz
(Log ηn) =

1

β−
n (z)

dβ−
n

dz
(z)− 1

β+
n (z)

dβ+
n

dz
(z), z ∈ [z1, z2],

as ∣∣∣∣ ddz (Log ηn)

∣∣∣∣ ≤ εn

|β−
n (z∗n)|

+
εn

|β+
n (z∗n)|

,

where εn = C

(
E|n|(r) + 1√

|n|

)
→ 0 as n → ∞. Therefore, (2.14) and (2.16)

imply that |ϕn(z1(n))− ϕn(z2(n)| ≤ 4(1 + c) · εn → 0; i.e., (3.18) holds.
From (3.17) it follows that

(3.19) |〈f0(n), g0(n)〉|2 = ‖f0(n)‖2‖g0(n)‖2 ·Πn,

with

(3.20) Πn =
1 + |ηn(z1)||ηn(z2)| − 2

√
|ηn(z1)||ηn(z2)| cosψn

(1 + |ηn(z1)|) (1 + |ηn(z2)|)
.

Now (3.18) implies that cosψn > 0 for large enough n, so taking into account
that ‖f0(n)‖, ‖g0(n)‖ ≤ 1, we obtain by (3.7),

|〈f0(n), g0(n)〉|2 ≤ Πn ≤ 1 + |ηn(z1)||ηn(z2)|
(1 + |ηn(z1)|) (1 + |ηn(z2)|)

≤ δ < 1

with

δ = sup

{
1 + xy

(1 + x)(1 + y)
:

1

4c
≤ x, y ≤ 4c

}
.

Finally, (3.14) shows that (3.6) holds, which completes the proof of (A).
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Proof of (B). For every Dirac potential v we set

(3.21) tn(z) =

⎧⎪⎨
⎪⎩
|β−

n (z)/β+
n (z)| if β+

n (z) �= 0,

∞ if β+
n (z) = 0, β−

n (z) �= 0,

1 if β+
n (z) = 0, β−

n (z) = 0;

then tn(z), |z| < 1, is well defined for large enough |n|.
If v �∈ X+, then there is a subsequence of indices (nk) in M+ such that one of

the following holds:

tnk
(z∗nk

) → 0 as k → ∞,(3.22)

tnk
(z∗nk

) → ∞ as k → ∞.(3.23)

Next we consider only the case (3.22) because the case (3.23) could be handled in
a similar way: if 1/tnk

(z∗nk
) → 0, then one may exchange the roles of β+

n and β−
n

and use the same argument.
In the above notation, if (3.22) holds, then there is a sequence (τk) of positive

numbers such that

(3.24) tnk
(z) ≤ τk → 0 ∀ z ∈ [z−nk

, z+nk
],

where [z−n , z+n ] denotes the segment with end points z−n and z+n .
Indeed, Lemma 2.5 and (3.22) imply that for large enough k,

(3.25) |γnk
| ≤ 2(|β−

nk
(z∗nk

)|+ |β+
nk
(z∗nk

)|) ≤ 4|β+
nk
(z∗nk

)|.
In view of (2.10) in Proposition 2.4, for z ∈ [z−n , z+n ] and n ∈ M+ with large

enough |n| we have

(3.26) |β±
n (z)− β±

n (z∗n)| ≤ sup
[z−

n ,z+
n ]

∣∣∣∣∂β±
n

∂z
(z)

∣∣∣∣ · |z − z∗n| ≤ εn|γn|,

with εn → 0 as |n| → ∞. Therefore, from (3.25) and (3.26) it follows that

(3.27) |β+
nk
(z)| ≥ |β+

nk
(z∗nk

)| − 4εnk
|β+

nk
(z∗nk

)| = (1− 4εnk
)|β+

nk
(z∗nk

)|.
On the other hand, (3.25) and (3.26) imply that

|β−
nk
(z)| ≤ |β−

nk
(z)− β−

nk
(z∗nk

)|+ |β−
nk
(z∗nk

)| ≤ 4εnk
|β+

nk
(z∗nk

)|+ |β−
nk
(z∗nk

)|.
Thus, since εnk

→ 0, we obtain

|β−
nk
(z)|

|β+
nk(z)|

≤
4εnk

|β+
nk
(z∗nk

)|+ |β−
nk
(z∗nk

)|
(1− 4εnk

)|β+
nk(z

∗
nk
)|

=
4εnk

+ tnk
(z∗nk

)

1− 4εnk

→ 0;

i.e., (3.24) holds with τk =
4εnk

+tnk
(z∗

nk
)

1−4εnk
.

Let the vectors f(nk), g(nk) ∈ Ran(Pnk
) be chosen as in (3.5). Then f(nk) and

g(nk) are unit eigenvectors which correspond to the simple eigenvalues λ+
nk

and λ−
nk
,

so they are uniquely determined up to constant multipliers of absolute value one.
Therefore, if the system of root functions of LPer+(v) contains Riesz bases, then
the system {f(nk), g(nk) : k ∈ N} has to be a Riesz basis in its closed linear span
which coincides with the closed linear span of {RanPnk

, k ∈ N}. By Lemma 2.1
and (3.14), this would imply that

(3.28) sup
k
〈f(nk), g(nk)〉 = sup

k
〈f0(nk), g

0(nk)〉 < 1.

Thus, the proof of (B) will be completed if we show that (3.28) fails.
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By Lemma 2.3, f0(nk) is an eigenvector of the matrix(
αnk

(z+nk
) β−

nk
(z+nk

)
β+
nk
(z+nk

) αnk
(z+nk

)

)

corresponding to its eigenvalue z+nk
, so it follows that f0(n) is proportional to the

vector
(
a(k)
1

)
with a(k) =

z+
nk

−αnk
(z+

nk
)

β+
nk

(z+
nk

)
. Moreover, from (2.11), (3.21) and (3.24) it

follows that

|a(k)| =
√
tnk

(z+nk) ≤
√
τk → 0 as k → ∞.

Therefore, we obtain

(3.29) f0(nk) =
‖f0(nk)‖√
|a(k)|2 + 1

(
a(k)
1

)
→

(
0
1

)
as k → ∞.

In the same way we obtain that g0(nk) →
(
0
1

)
as k → ∞. Hence, 〈f0(nk), g

0(nk)〉 →
1 as k → ∞, so (3.28) fails, which completes the proof of (B). �

By Theorem 3.1, the condition (2.14) guarantees that there exists a Riesz basis
in L2([0, π],C2) which consists of root functions of the operator LPer±(v). Besides
the case v ∈ Xt (see the next section for a definition of the class of potentials Xt)
it seems difficult to verify the condition (2.14). Moreover, since the points z∗n are
not known in advance, in order to check (2.14) one has to compare the values of
β±
n (z) for all z close to 0. Next we give a modification of Theorem 3.1, which is

more suitable for applications.
Consider potentials v such that for n ∈ Γ+ = 2Z (or n ∈ Γ− = 2Z + 1) with

large enough |n|,
(3.30) β−

n (0) �= 0, β+
n (0) �= 0

and

(3.31) ∃d > 0 : d−1|β±
n (0)| ≤ |β±

n (z)| ≤ d |β±
n (0)| ∀z ∈ D = {z : |z| < 1/4}.

Theorem 3.2. Suppose bc = Per+ (or bc = Per−), and v is a Dirac potential
such that (3.30) and (3.31) hold for n ∈ Γ+ (respectively n ∈ Γ−). Then

(a) the system of root functions of LPer+(v) (respectively LPer−(v)) is complete
and contains at most finitely many linearly independent associated functions;

(b) the system of root functions of LPer+(v) (respectively LPer−(v)) contains
Riesz bases if and only if

(3.32) 0 < lim inf
n∈Γ+

|β−
n (0)|

|β+
n (0)|

, lim sup
n∈Γ+

|β−
n (0)|

|β+
n (0)|

< ∞

(or, respectively, lim inf and lim sup are taken over Γ−).

Remark. Although the conditions (3.30)–(3.32) look too technical there is, after
[2, 3], a well-elaborated technique to evaluate these parameters and check these
conditions. To compare with the case of Hill operators with trigonometric polyno-
mial coefficients, see [5, 6].

Proof. By Proposition 2.4, for large enough |n|, the basic equation

(3.33) (z − αn(z))
2 = β+

n (z)β−
n (z)
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has exactly two roots (counted with multiplicity) in the disc D = {z : |z| < 1/4}.
Therefore, a number λ = n+z with z ∈ D is a periodic or antiperiodic eigenvalue of
algebraic multiplicity two if and only if z ∈ D satisfies the system of two equations
(3.33) and

(3.34) 2(z − αn(z))
d

dz
(z − αn(z)) =

d

dz

(
β+
n (z)β

−
n (z)

)
.

In view of [4, Theorem 9], the system of root functions of the operator LPer±(v)
is complete, so Part (a) of the theorem will be proved if we show that there are at
most finitely many n such that the system (3.33), (3.34) has a solution z ∈ D.

Suppose that z∗ ∈ D satisfies (3.33) and (3.34). By (2.10), for each z ∈ D,

(3.35)

∣∣∣∣dαn

dz
(z)

∣∣∣∣ ≤ εn,

∣∣∣∣dβ±
n

dz
(z)

∣∣∣∣ ≤ εn with εn → 0 as |n| → ∞.

In view of (3.35), the equation (3.34) implies that

2 |z∗ − αn(z
∗)| (1− εn) ≤ εn

(
|β+

n (z∗)|+ |β−
n (z∗)|

)
.

By (3.33),

|z∗ − αn(z
∗)| = |β+

n (z∗)β−
n (z∗)|1/2,

so it follows, in view of (3.31), that

2(1− εn) ≤ εn

(∣∣∣∣β+
n (z∗)

β−
n (z∗)

∣∣∣∣
1/2

+

∣∣∣∣β−
n (z∗)

β+
n (z∗)

∣∣∣∣
1/2

)
≤ 2dεn.

Since εn → 0 as |n| → ∞, the latter inequality holds for at most finitely many n,
which completes the proof of (a).

In view of (a), all but finitely many of the eigenvalues of LPer± are simple; i.e.,
λ−
n �= λ+

n for large enough |n|. One can easily see that Conditions (3.30)–(3.32)
imply (2.14), respectively for n ∈ Γ+ or n ∈ Γ−, i.e., v ∈ X+ or v ∈ X−. Hence (b)
follows from Theorem 3.1.

Remark. For Hill-Schrödinger operators with L2-potentials, an analog of Theo-
rem 3.2 has been proven in [6, Theorem 1] (see also [5, Theorem 2]).

Theorem 3.1 gives a criterion for the existence of a Riesz basis consisting of root
functions in the case of Dirac operators LPer±(v) with L2-potentials. Technically
its proof is based on the same argument as in [6, Theorem 1]. Moreover, analogs of
Theorems 3.1 and 3.2 hold for Hill-Schrödinger operators with H−1-potentials and
the proofs are essentially the same. �

4. Applications

Consider the classes of Dirac potentials

(4.1) Xt =

{
v =

(
0 P
Q 0

)
, Q(x) = tP (x), P,Q ∈ L2([0, π])

}
, t ∈ R \ {0}.

If t = 1 we get the class X1 of symmetric Dirac potentials (which generate self-
adjoint Dirac operators); X−1 is the class of skew-symmetric Dirac potentials. Next
we show that if v ∈ Xt, then the system of root functions of LPer+(v) or LPer−(v)
contains Riesz bases.



RIESZ BASES 1373

Proposition 4.1. Suppose v ∈ Xt, t ∈ R \ {0}.
(a) If t > 0, then there is a symmetric potential ṽ such that LPer±(v) is similar

to the self-adjoint operator LPer±(ṽ), so its spectrum Sp (LPer±(v)) ⊂ R.
(b) If t < 0, then there is a skew-symmetric potential ṽ such that LPer±(v) is

similar to LPer±(ṽ). Moreover, there is an N = N(v) such that for |n| > N either

(i) λ−
n and λ+

n are simple eigenvalues and λ+
n = λ−

n , Imλ±
n �= 0

or
(ii) λ+

n = λ−
n is a real eigenvalue of algebraic and geometric multiplicity 2.

(c) For large enough |n|,

(4.2) β+
n (z∗n, v) = t · β−

n (z∗n, v),

which implies Xt ⊂ X+ ∪X−.
(d) The system of root functions of LPer+(v) (or LPer−(v)) contains Riesz bases.

Proof. For every c �= 0, the Dirac operator LPer±(v) is similar to the Dirac operator

LPer±(vc) with vc =
(

0 cP
1
cQ 0

)
. Indeed, if C =

(
c 0
0 1

)
, then a simple calculation

shows that CLPer±(v) = LPer±(vc)C.

If v ∈ Xt we set ṽ = vc with c =
√
|t|. Then 1

cQ = t
cP = t√

|t|
P = ±cP .

Therefore, ṽ is symmetric or skew-symmetric, respectively, for t > 0 and t < 0.
(b) By (2.6), (LPer±(v))

∗ = LPer±(v
∗) with

v∗ =

(
0 Q
P 0

)
=

(
0 tP
1
tQ 0

)
= vt,

so the operator LPer±(v) is similar to its adjoint operator. Therefore, if λ ∈
Sp (LPer±(v)) , then λ ∈ Sp (LPer±(v)) as well.

On the other hand, by Lemma 2.2, there is an N = N(v) such that for |n| > N
the disc Dn = {z : |z − n| < 1/4} contains exactly two (counted with algebraic
multiplicity) periodic (for even n) or antiperiodic (for odd n) eigenvalues of the
operator LPer± . Therefore, if λ ∈ Dn with Imλ �= 0 is an eigenvalue of LPer± ,
then λ ∈ Dn is also an eigenvalue of LPer± and λ �= λ, so λ and λ are simple; i.e.,
(i) holds.

Suppose λ ∈ Dn is a real eigenvalue. If
(
w1

w2

)
is a corresponding eigenvector,

then passing to conjugates we obtain L
(

w2

−w1

)
= λL

(
w2

−w1

)
; i.e.,

(
w2

−w1

)
is also an

eigenvector corresponding to the eigenvalue λ. But 〈
(
w1

w2

)
,
(

w2

−w1

)
〉 = 0, so these

vectors are linearly independent. Hence (ii) holds.
(c) By (i) and (ii) it follows that

z∗n =
1

2
(λ−

n + λ+
n )− n is real for |n| > N.

In view of (2.8), this implies that (4.2) holds.
(d) In view of (4.2), we have v ∈ X, so the claim follows from Theorem 3.1. �
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Example 4.2. If a, b, A,B are nonzero complex numbers and

(4.3) v =

(
0 P
Q 0

)
with P (x) = ae2ix + be−2ix, Q(x) = Ae2ix +Be−2ix,

then the system of root functions of LPer+(v) (or LPer−(v)) contains at most finitely
many linearly independent associated functions. Moreover, the system of root func-
tions of LPer+(v) contains Riesz bases always, while the system of root functions
of LPer−(v) contains Riesz bases if and only if |aA| = |bB|.

Let us mention that if bc = Per+, then it is easy to see by (2.8) that β±
n (z) = 0

whenever defined, so the claim follows from Theorem 3.1.
If bc = Per−, then the result follows from Theorem 3.2 and the asymptotics

β+
n (0) = A

n+1
2 a

n−1
2 4−n+1

[(
n− 1

2

)
!

]−2 (
1 +O(1/

√
|n|

)
,(4.4)

β−
n (0) = b

n+1
2 B

n−1
2 4−n+1

[(
n− 1

2

)
!

]−2 (
1 +O(1/

√
|n|

)
.(4.5)

Proofs of (4.4), (4.5) and similar asymptotics related to other trigonometric poly-
nomial potentials and implying Riesz basis existence or nonexistence will be given
elsewhere (see similar results for the Hill-Schrödinger operator in [5, 6]).
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