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A SIMPLE PROOF OF Lq-ESTIMATES

FOR THE STEADY-STATE OSEEN AND STOKES EQUATIONS

IN A ROTATING FRAME. PART II: WEAK SOLUTIONS

GIOVANNI P. GALDI AND MADS KYED

(Communicated by Walter Craig)

Abstract. This is the second of two papers in which simple proofs of Lq-
estimates of solutions to the steady-state three-dimensional Oseen and Stokes
equations in a rotating frame of reference are given. In this part, estimates are
established in terms of data in homogeneous Sobolev spaces of negative order.

1. Introduction

As in [GK11a], we study the system{
−Δv +∇p−R∂3v − T

(
e3 ∧x · ∇v − e3 ∧v

)
= f in R

3,

div v = 0 in R
3,

(1.1)

where R ≥ 0 and T > 0 are dimensionless constants. Here, v : R3 → R
3 and

p : R3 → R represent Eulerian velocity and pressure fields, respectively, of a Navier-
Stokes liquid in a frame of reference rotating with angular velocity T e3 relative
to some inertial frame. The above system is the classical steady-state whole space
Oseen (R > 0) or Stokes (R = 0) problem with the extra term T

(
e3 ∧x·∇v−e3 ∧v

)
,

which stems from the rotating frame of reference. Due to the unbounded coefficient
e3 ∧x, this term cannot be treated as a perturbation to the Oseen or Stokes operator.

In [GK11a] we gave an elementary proof of Lq-estimates of solutions (v, p) to
(1.1) in terms of data f ∈ Lq(R3)3, 1 < q < ∞. Such estimates had already been
shown in [FHM04] and [Far06], but with very technical and non-trivial proofs based
on an appropriate coupling of the Littlewood-Payley decomposition theorem and
multiplier theory. In [His06], [KNP08], and [KNP10] an approach similar to the
one in [FHM04] and [Far06] was used to prove Lq-estimates of weak solutions to

(1.1) in terms of data f in the homogeneous Sobolev space D−1,q
0 (R3)3 of negative

order. Our aim in this paper is to extend our approach from [GK11a] and give an
elementary proof of these estimates of weak solutions.

Our main theorem reads:

Theorem 1.1. Let 1 < q < ∞, R0 > 0, 0 ≤ R < R0, and T > 0. For any
f ∈ D−1,q

0 (R3)3 there exists a solution (v, p) ∈ D1,q(R3)3 × Lq(R3) to (1.1) that
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satisfies

‖∇v‖q + ‖p‖q ≤ C1|f |−1,q,(1.2)

with C1 independent of R0, R, and T . Moreover,

|R∂3v|−1,q + |T
(
e3 ∧x · ∇v − e3 ∧v

)
|−1,q

≤ C2

(
1 +

1

T 2

)
|f |−1,q,(1.3)

with C2 = C2(R0). Furthermore, if (ṽ, p̃) ∈ D1,r(R3)3 × Lr(R3), 1 < r < ∞, is
another solution to (1.1), then

ṽ = v + α e3(1.4)

for some α ∈ R.

Remark 1.2. In [KNP10, Theorem 2.1 and Proposition 3.2] it is stated that a

solution (v, p) ∈ D1,q(R3)3 × Lq(R3) to (1.1) with f ∈ D−1,q
0 (R3)3 satisfies

|R∂3v|−1,q + |T
(
e3 ∧x · ∇v − e3 ∧v

)
|−1,q

≤ C3|f |−1,q

with C3 independent of T . However, going more carefully through the relevant
proofs of [KNP10], in particular those in Appendix 2, one finds that the constant
C3 does, in fact, depend on T exactly in the way shown in (1.3).

Before giving a proof of Theorem 1.1, we first recall some standard notation.
By Lq(R3) we denote the usual Lebesgue space with norm ‖·‖q. For m ∈ N and
1 < q < ∞ we use Dm,q(R3) to denote the homogeneous Sobolev space with semi-
norm |·|m,q, i.e.,

|v|m,q :=

( ∑
|α|=m

∫
R3

|∂αv(x)|q dx
) 1

q

, Dm,q := {v ∈ L1
loc(R

3) | |v|m,q < ∞}.

We put Dm,q
0 (R3) := C∞

0 (R3)
|·|m,q . We introduce homogeneous Sobolev spaces

of negative order as the dual spaces D−m,q
0 (R3) :=

(
Dm,q′

0 (R3)
)′

and denote their
norms by |·|−m,q. Here, and throughout the paper, q′ := q/(q−1) denotes the Hölder

conjugate of q. For functions u : R3 × R → R, we let div u(x, t) := divx u(x, t),
Δu(x, t) := Δxu(x, t), etc.; that is, unless otherwise indicated, differential operators

act in the spatial variable x only. We use Ff = f̂ to denote the Fourier transfor-
mation. We put Bm := {x ∈ R

3 | |x| < m}. Finally, note that constants in capital
letters in the proofs and theorems are global, while constants in small letters are
local to the proof in which they appear.

2. Proof of main theorem

As in [GK11a] we make use of an idea going back to [Gal03] and transform solu-
tions to (1.1) into time-periodic solutions to the classical time-dependent Oseen and
Stokes problem. For this purpose, we introduce the rotation matrix corresponding
to the angular velocity T e3:

Q(t) :=

⎛⎝cos(T t) − sin(T t) 0
sin(T t) cos(T t) 0

0 0 1

⎞⎠ .

We split the proof into several lemmas. We begin by recalling the following
result; see [Gal02] or [Sil04].
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Lemma 2.1. Let R ≥ 0 and T > 0. For any h ∈ C∞
0 (R3)3×3 there is a solution

(v, p) ∈ D1,2(R3)3 ∩ L6(R3)3 × L2(R3)(2.1)

to {
−Δv +∇p−R∂3v − T

(
e3 ∧x · ∇v − e3 ∧v

)
= div h in R

3,

div v = 0 in R
3

(2.2)

that satisfies

‖∇v‖2 + ‖p‖2 ≤ C4‖h‖2,(2.3)

with C4 independent of R and T . Moreover

(v, p) ∈
∞⋂

m=1

Dm+1,2(R3)3 ×Dm,2(R3).(2.4)

In the next lemma we establish suitable Lq-estimates of the solution introduced
above.

Lemma 2.2. Let R ≥ 0 and T > 0. Let 1 < q < ∞ and h ∈ C∞
0 (R3)3×3. The

solution (v, p) from Lemma 2.1 satisfies

‖∇v‖q + ‖p‖q ≤ C5‖h‖q,(2.5)

with C5 independent of R and T .

Proof. Assume first that q > 2. Let T > 0. For (x, t) ∈ R
3 × R put

u(x, t) := Q(t)v
(
Q(t)�x−Rt e3

)
, p(x, t) := p

(
Q(t)�x−Rt e3

)
,

H(x, t) := Q(t)h
(
Q(t)�x−Rt e3

)
Q(t)�.

Then ⎧⎪⎨⎪⎩
∂tu−Δu+∇p = divH in R

3 × (0, T ),

div u = 0 in R
3 × (0, T ),

u(x, 0) = v(x) in R
3.

(2.6)

By using classical multiplier theory like, for example, in [Lad69, Chap. 4, Sec. 5,
Theorem 6], it is straightforward to show that the Cauchy problem⎧⎪⎪⎨⎪⎪⎩

∂tu1 −Δu1 = divH −∇p in R
3 × (0, T ),

div u1 = 0 in R
3 × (0, T ),

lim
t→0+

‖u1(·, t)‖6 = 0

has a solution with u1 ∈ Lr
(
R

3 × (0, T )
)3

for all 1 < r < ∞, and

‖∇u1‖Lr(R3×(0,T )) ≤ c1‖H‖Lr(R3×(0,T )),

with c1 independent of T . Put

u2(x, t) := (4πt)−3/2

∫
R3

e−|x−y|2/4t v(y) dy.(2.7)
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An elementary calculation shows that u2 ∈ L6
(
R

3 × (0, T )
)
, ∂tu2,∇u2,∇2u2 ∈

L6
loc

(
R

3 × (0, T )
)
, and that u2 solves⎧⎪⎪⎨⎪⎪⎩

∂tu2 −Δu2 = 0 in R
3 × (0, T ),

div u2 = 0 in R
3 × (0, T ),

lim
t→0+

‖u2(·, t)− v(·)‖6 = 0.

Taking derivatives on both sides in (2.7) and applying Young’s inequality, we obtain

‖∇u2(·, t)‖Lq(R3) ≤ c2 t
− 3

2 (
1
2−

1
q ) ‖∇v‖2,

with c2 independent of T . We claim that u = u1 + u2 in R
3 × (0, T ). This follows

from the fact that u1+u2 satisfies (2.6) combined with a uniqueness argument, for
example [GK11b, Lemma 3.6]. Recalling that q > 2 by assumption, we can now
estimate

(T − 1)‖∇v‖qq =

∫ T

1

∫
R3

|∇u(x, t)|q dxdt

≤ c3

(
‖∇u1‖qLq(R3×(0,T )) +

∫ T

1

‖∇u2(·, t)‖qq dt
)

≤ c4

(
‖H‖qLq(R3×(0,T )) +

∫ T

1

t−
3q
2 ( 1

2−
1
q )‖∇v‖q2 dt

)
≤ c5

(
T‖h‖qq + T 1−ε‖∇v‖q2

)
,

for some ε ∈ (0, 1) and c5 independent of T , R, and T . Dividing both sides by T ,
and subsequently letting T → ∞, we conclude that ‖∇v‖qq ≤ c5‖h‖qq. Finally, we
deduce directly from (2.2), applying div on both sides in (1.1)1, that Δp = div div h,
which implies that ‖p‖q ≤ c6‖h‖q, with c6 independent of R and T . Hence (2.5)
follows in the case q > 2.

The case q = 2 is included in Lemma 2.1. Now consider 1 < q < 2. In this
case we will establish (2.5) by a duality argument. Consider for this purpose ϕ ∈
C∞

0 (R3)3×3. For notational purposes, we put

Lv := −Δv −R∂3v − T
(
e3 ∧x · ∇v − e3 ∧v

)
,(2.8)

L∗v := −Δv +R∂3v + T
(
e3 ∧x · ∇v − e3 ∧v

)
.(2.9)

As in Lemma 2.1, one can show the existence of a solution (ψ, η), in the class (2.1)
and (2.4), to the adjoint problem{

L∗ψ +∇η = divϕ in R
3,

divψ = 0 in R
3.

(2.10)

By arguments as above, one can also show that

∀r ∈ (2,∞) : ‖∇ψ‖r + ‖η‖r ≤ c7‖ϕ‖r,(2.11)
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with c7 independent of R and T . Using the same approximation technique as in
[GK11a, Proof of Lemma 2.3], we compute

|
∫
R3

∇v : ϕ dx| = |
∫
R3

v · divϕ dx| = |
∫
R3

v · L∗ψ dx|

= |
∫
R3

Lv · ψ dx| = |
∫
R3

div h · ψ dx| = |
∫
R3

h : ∇ψ dx|

≤ ‖h‖q‖∇ψ‖q′ ≤ c7‖h‖q‖ϕ‖q′ ,

(2.12)

where the last estimate follows from (2.11) since 2 < q′ < ∞. Having established
(2.12) for arbitrary ϕ, we conclude that ‖∇v‖q ≤ c7‖h‖q. Finally, the estimate
‖p‖q ≤ c8‖h‖q follows simply from the fact that Δp = div div h. We have thus
established (2.5) also in the case 1 < q ≤ 2. This concludes the lemma. �

In the next lemma we establish estimates of the lower-order terms on the left-
hand side of (1.1).

Lemma 2.3. Let R > 0 and T > 0. Let 1 < q < ∞ and h ∈ C∞
0 (R3)3×3. The

solution (v, p) from Lemma 2.1 satisfies

|R∂3v|−1,q + |T
(
e3 ∧x · ∇v − e3 ∧v

)
|−1,q

≤ C6

(
1 +

1

T 2

)
‖h‖q,(2.13)

with C6 = C6(R0).

Proof. Consider first 1 < q ≤ 2. For (x, t) ∈ R
3 × R put

u(x, t) := Q(t)v
(
Q(t)�x

)
, p(x, t) := p

(
Q(t)�x

)
,

H(x, t) := Q(t)h
(
Q(t)�x

)
Q(t)�.

Note that u, p, and H are smooth and 2π
T -periodic in the t variable. We can

therefore expand these fields in their Fourier series. More precisely, we have

u(x, t) =
∑
k∈Z

uk(x) e
iT kt, p(x, t) =

∑
k∈Z

pk(x) e
iT kt,

H(x, t) =
∑
k∈Z

Hk(x) e
iT kt,

with

uk(x) :=
T
2π

∫ 2π/T

0

u(x, t) e−iT kt dt, pk(x) :=
T
2π

∫ 2π/T

0

p(x, t) e−iT kt dt,

Hk(x) :=
T
2π

∫ 2π/T

0

H(x, t) e−iT kt dt.

As one may easily verify,{
∂tu−Δu+∇p−R∂3u = divH in R

3 × R,

div u = 0 in R
3 × R.

(2.14)

Replacing in (2.14) u, p, and H with their respective Fourier series, we find that
each Fourier coefficient satisfies{

iT kuk −Δuk +∇pk −R∂3uk = divHk in R
3,

div uk = 0 in R
3.

(2.15)
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In the case k = 0, (2.15) reduces to the classical Oseen system. By well-known
theories (see for example [Gal94, Theorem VII.4.2]),

‖∇u0‖q +R|∂3u0|−1,q ≤ c1‖H0‖q ≤ c2‖h‖q,(2.16)

with c2 independent of R and T . Now consider k �= 0. By Minkowski’s integral
inequality and Lemma 2.2, we find that

‖∇uk‖q ≤ T
2π

∫ 2π/T

0

(∫
R3

|∇u(x, t)|q dx
)1/q

dt = ‖∇v‖q ≤ C5‖h‖q,

and similarly ‖pk‖q ≤ C5‖h‖q. We can thus conclude from (2.15) that

|T k||uk|−1,q ≤ ‖∇uk‖q + ‖pk‖q +R|∂3uk|−1,q ≤ c3‖h‖q +R|∂3uk|−1,q,(2.17)

with c3 independent of R and T .1 A simple interpolation argument2 yields

|∂3uk|−1,q ≤ c4(ε|uk|−1,q + ε−1‖∇uk‖q)(2.18)

for all ε > 0. We now choose ε = |T k|/(2Rc4) in (2.18) and apply the resulting
estimate in (2.17). It follows that

|uk|−1,q ≤ c5
1

|T k|

(
1 +

R2

|T k|

)
‖h‖q (k �= 0),(2.19)

with c5 independent of R and T . We observe at this point that v(x) = u(x, 0) =∑
k∈Z

uk(x) and put

v1 := v − u0.(2.20)

We then define

U(x, t) := Q(t)v1
(
Q(t)�x

)
= u(x, t)− u0 =

∑
k �=0

uk(x) e
iT kt .

The first equality above follows from the fact that Q(t)u0(Q(t)�x) = u0(x) for
all t ∈ R, which one easily verifies directly from the definition of u0. Now let
ϕ ∈ C∞

0 (R3)3 and put ϕ(x, t) := Q(t)ϕ(Q(t)�x). Since ϕ is smooth and 2π/T -
periodic in t, we can write ϕ in terms of its Fourier series:

Φ(x, t) =
∑
k∈Z

Φk(x) e
iT kt, Φk(x) :=

T
2π

∫ 2π/T

0

Φ(x, t) e−iT kt dt.

1Since uk solves the resolvent-like system (2.15), known theory implies that |∂3uk|−1,q is finite.
One can also show this directly by applying ∂3 to both sides of (2.15), which shows that ∂3uk

satisfies the same system. Repeating the preceding arguments of the proof with (∂3uk, ∂3pk)
in the role of (uk, pk), and likewise substituting (∂3u, ∂3p) for (u, p) and (∂3v, ∂3p) for (v, p), it

follows that ∇2∂3uk,∇∂3pk ∈ D−1,q
0 (R3). Returning to (2.15), one then finds ∂3uk ∈ D−1,q

0 (R3).
2In fact, the inequality is an obvious consequence of the following one:

(*) ‖u‖2
q,R3 ≤ c |u|−1,q,R3 |u|1,q,R3 ,

which, by the argument of [Gal94, Lemma VII.4.3], is enough to prove for u ∈ C∞
0 (R3). By the

Calderón-Zygmund theorem, it is easy to see that the function ψ = ∇(E ∗u), with E a fundamental
solution to Laplace’s equation, satisfies divψ = u, ‖∇2ψ‖q ≤ c|u|1,q , ‖ψ‖q ≤ c|u|−1,q, so that (*)

follows from the classical Nirenberg’s inequality ‖divψ‖2q ≤ c‖ψ‖q‖∇2ψ‖q.
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We now compute, using Parseval’s identity and (2.19),

|
∫
R3

v1(x) · ϕ(x) dx| = | T
2π

∫ 2π/T

0

∫
R3

U(x, t) · Φ(x, t) dxdt|

= |
∫
R3

∑
k �=0

uk(x) · Φk(x) dx|

≤
∑
k �=0

|uk|−1,q‖∇Φk‖q′

≤ c5

(
1 +

R2

T

)
‖h‖q

∑
k �=0

1

|T k| ‖∇Φk‖q′

≤ c5

(
1 +

R2

T

)
1

T ‖h‖q
(∑

k �=0

1

|k|q
) 1

q
(∑

k �=0

‖∇Φk‖q
′

q′

) 1
q′

.

Recalling that 1 < q ≤ 2, we employ the Hausdorff-Young inequality to estimate(∑
k �=0

‖∇Φk‖q
′

q′

) 1
q′

≤
(∫

R3

[
T
2π

∫ 2π/T

0

|∇Φ(x, t)|q dt
] q′

q

dx

) 1
q′

.

Applying Minkowski’s integral inequality to the right-hand side above, we obtain(∑
k �=0

‖∇Φk‖q
′

q′

) 1
q′

≤
(

T
2π

∫ 2π/T

0

[ ∫
R3

|∇Φ(x, t)|q
′
dx

] q

q′

dt

) 1
q

= ‖∇ϕ‖q′ .

We thus conclude that

|
∫
R3

v1(x) · ϕ(x) dx| ≤ c6

(
1 +

R2

T

)
1

T ‖h‖q‖∇ϕ‖q′ ,

and consequently, since ϕ is arbitrary,

|v1|−1,q ≤ c7

(
1 +

R2

T

)
1

T ‖h‖q,(2.21)

with c7 independent of R and T . By the same interpolation argument as in (2.18),
we estimate

|∂3v1|−1,q ≤ c8(|v1|−1,q + ‖∇v1‖q).(2.22)

Now combining (2.5), (2.16), (2.20), (2.21), and (2.22), we obtain

∀q ∈ (1, 2] : |R∂3v|−1,q ≤ c9

(
1 +

1

T 2

)
‖h‖q,(2.23)

with c9 = c9(R0).
Now consider 2 < q < ∞. Let ϕ ∈ C∞

0 (R3)3. Recall (2.8) and (2.9). By [GK11a,
Lemma 2.1] there is a solution (ψ, η) ∈ D1,2(R3)3 ∩ L6(R3)3 × L6(R3) to{

L∗ψ +∇η = ϕ in R
3,

divψ = 0 in R
3

(2.24)

satisfying (2.4). Moreover, since Δ commutes with L∗, (Δψ,Δη) satisfies{
L∗Δψ +∇Δη = div∇ϕ in R

3,

divΔψ = 0 in R
3.

(2.25)
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Repeating the argument from above leading to (2.23), we also obtain

∀r ∈ (1, 2] : |R∂3Δψ|−1,r ≤ c10

(
1 +

1

T 2

)
‖∇ϕ‖r,(2.26)

with c10 = c10(R0). As in (2.12), we compute∫
R3

∂3v · ϕ dx =

∫
R3

∂3v · L∗ψ dx = −
∫
R3

Lv · ∂3ψ dx = −
∫
R3

div h · ∂3ψ dx.

Put3 Θi := F−1
[ ξj
|ξ|2 ĥij(ξ)

]
, i = 1, 2, 3. Then Θ ∈ Lr(R3)3 for all r ∈ (3/2,∞),

‖∇Θ‖q ≤ c11‖h‖q, and ΔΘ = div h. It follows that

|
∫
R3

∂3v · ϕ dx| = |
∫
R3

Θ · ∂3Δψ dx| ≤ ‖∇Θ‖q|∂3Δψ|−1,q′ ≤ c12‖h‖q|∂3Δψ|−1,q′ .

Since q′ ∈ (1, 2), we deduce by (2.26) that

|
∫
R3

∂3v · ϕ dx| ≤ c13

(
1 +

1

T 2

)
‖h‖q‖∇ϕ‖q′ .

We conclude |R∂3v|−1,q ≤ c14(1 + T −2)‖h‖q, with c14 = c14(R0).

Since T
(
e3 ∧x · ∇v − e3 ∧v

)
= Δv −∇p +R∂3v + div h, the estimates already

obtained in (2.5) together with the estimate for R∂3v above imply that

|T
(
e3 ∧x · ∇v − e3 ∧v

)
|−1,q

≤ c15

(
1 +

1

T 2

)
‖h‖q,

with c15 = c15(R0). We have thus established (2.13) completely. �

We can now finalize the proof of the main theorem.

Proof of Theorem 1.1. Except for the uniqueness statement, Lemmas 2.1–2.3 es-
tablish the theorem in the case f = div h for some h ∈ C∞

0 (R3)3×3. It remains to

extend to the general case f ∈ D−1,q
0 (R3)3. Consider therefore f ∈ D−1,q

0 (R3)3.

Choose a sequence {hn}∞n=1 ⊂ C∞
0 (R3)3×3 with limn→∞ div hn = f in D−1,q

0 (R3)3.
Let (vn, pn) be the solution from Lemma 2.1 corresponding to the right-hand side
div hn. Then choose κn ∈ R

3 such that 0 =
∫
B1

vn − κn dx. From Lemma 2.2 and

Poincaré’s inequality, it follows that {(vn−κn, pn)}∞n=1 is a Cauchy sequence in the
Banach space

Xm := {(v, p) ∈ L1
loc(R

3)3 × L1
loc(R

3) | ‖(v, p)‖Xm
< ∞},

‖(v, p)‖Xm
:= ‖∇v‖q + ‖p‖q + ‖v‖Lq(Bm)

for all m ∈ N. Consequently, there is an element (v, p) ∈
⋂

m∈N
Xm with the

property that limn→∞(vn − κn, pn) = (v, p) in Xm for all m ∈ N. Recall (2.8). It
follows that limn→∞[L(vn − κn) +∇pn] = Lv +∇p in D′(R3)3. By construction,

limn→∞[Lvn + ∇pn] = f in D−1,q
0 (R3)3. We thus deduce that limn→∞ Lκn =

f − [Lv + ∇p]. Consequently, f − [Lv + ∇p] = Lκ for some κ ∈ R
3. It follows

3Following the summation convention, we implicitly sum over repeated indices.
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that (v + κ, p) ∈ D1,q(R3)3 × Lq(R3) solves (1.1). Moreover, since (vn, pn) satisfies
(1.2) and (1.3) for all n ∈ N, so does (v+ κ, p). This concludes the first part of the
theorem.

To prove the statement of uniqueness, assume that (ṽ, p̃) ∈ D1,r(R3)3 × Lr(R3)
is another solution to (1.1). Put w := v − ṽ and q := p − p̃. It immediately
follows that Δq = 0, which, since q ∈ Lq(R3) + Lr(R3), implies that q = 0. Now
put U(x, t) := Q(t)w(Q(t)�x) for (x, t) ∈ R

3 × R. Since U is smooth and 2π/T -
periodic in t, we can write U in terms of its Fourier series

U(x, t) =
∑
k∈Z

Uk(x) e
iT kt, Uk(x) :=

T
2π

∫ 2π/T

0

U(x, t) e−iT kt dt.

As one may easily verify, Uk satisfies iT kUk − ΔUk − R∂3Uk = 0 in S ′(R3)3.

Thus, a Fourier transformation yields
(
i(T k −Rξ3) + |ξ|2

)
Ûk = 0. It follows that

Uk = 0 for all k �= 0. Moreover, since
(
− iRξ3 + |ξ|2

)
Û0 = 0, it follows that

supp(Û0) ⊂ {0}. Consequently, since U0 ∈ D1,q(R3)3 +D1,r(R3)3, U0 = b for some
b ∈ R

3. It follows that U(x, t) = b = Q(t)w(Q(t)�x) for all t ∈ R and x ∈ R
3.

Thus, Q(t)�b is t-independent, and so b = α e3 for some α ∈ R. We conclude that
w(x) = U0(x) = α e3. �
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