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ON SCATTERING PASSIVE SYSTEM NODES

AND MAXIMAL SCATTERING DISSIPATIVE OPERATORS

OLOF J. STAFFANS

(Communicated by Richard Rochberg)

Abstract. There is an extensive literature on a class of linear time-invariant
dynamical systems called “well-posed scattering passive systems”. Such a
system is generated by an operator S which is called a scattering passive
system node. In the existing literature such a node is typically introduced
by first giving a list of assumptions which imply that S is a system node
and then adding an inequality which forces this system node to be scattering

passive. Here we proceed in the opposite direction: we start by requiring that
S satisfies the passivity inequality and then ask the question, what additional
conditions are needed in order for S to be a system node? The answer is
surprisingly simple: A necessary and sufficient condition for an operator S to
be a scattering passive system node is that S is closed and maximal within
the class of operators that satisfy the passivity inequality. In the absence
of external inputs and outputs, this condition is identical to the standard
condition which characterizes the class of operators which generate contraction
semigroups on Hilbert spaces.

1. Introduction

There is an extensive literature on a class of linear time-invariant dynamical
systems called “well-posed scattering passive systems”; see, e.g., [AN96, MS06,
MSW06, Sta01, Sta02a, Sta02b, Sta05, SW12, WST01]. Such a system has an in-
put space U , a state space X , and an output space Y , all of which are Hilbert spaces,
and it is generated by a closed operator S : [XU ] →

[X
Y
]
with dense domain. Clas-

sical trajectories of the system on the time interval R+ := [0,∞) consist of triples
of functions (u, x, y), where u ∈ C(R+;U), x ∈ C1(R+;X ), and y ∈ C(R+;Y)
satisfying

(1.1)

[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ∈ R

+.

The operator S is usually supposed to be (at least) a system node, i.e., to satisfy
the following conditions:

Definition 1.1. By a system node on a triple of Hilbert spaces (X ,U ,Y) we mean a
linear operator S : [XU ] →

[X
Y
]
with the following properties. We denote dom (A) ={

x ∈ X
∣∣ [ x0 ] ∈ dom (S)

}
, define A : dom (A) → X by Ax = PXS [ x0 ] (where PX is

the projection of
[X
Y
]
onto X ), and require the following conditions to hold:
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(i) S is closed as an operator from [XU ] to
[X
Y
]
.

(ii) PXS is closed as an operator from [XU ] to X (with domain dom (S)).
(iii) A is the generator of a C0 semigroup.
(iv) For every u ∈ U there exists an x ∈ X such that [ xu ] ∈ dom (S).

(Definition 4.7.2 in [Sta05] is more complicated, but according to [Sta05, Lem-
ma 4.7.7] it is equivalent to Definition 1.1 above.)

The assumption that S is a system node implies, among others, that for a suf-
ficiently large set of initial states x0 ∈ X and input functions u there exist unique
functions x and y satisfying (1.1). A system node S is called passive if all the
classical trajectories of (1.1) satisfy

(1.2)
d

dt
‖x(t)‖2X + ‖y(t)‖2Y ≤ ‖u(t)‖2U , t ∈ R

+.

By integrating this inequality into

(1.3) ‖x(t)‖2X +

∫ t

0

‖y(s)‖2Y ds ≤ ‖x(0)‖2X +

∫ t

0

‖u(s)‖2U ds, t ∈ R
+,

one gets still another equivalent way of characterizing scattering passivity. This
integrated version is valid even for generalized trajectories of (1.1). See [Sta05,
Chapter 11] for details.

It follows from (1.1) and (1.2) (together with Definition 1.1) that a system node
S is passive if and only if it satisfies the following condition:

(1.4) for all [ xu ] ∈ dom (S), 2�〈ẋ, x〉+ ‖y‖2Y ≤ ‖u‖2U , where
[
ẋ
y

]
:= S [ xu ] .

In the sequel we shall call operators satisfying condition (1.4) scattering dissipative.
Note that if U = Y = {0}, then condition (1.4) reduces to the standard dissipativity
condition on S, and if X = {0}, then the above condition says that S is a (not
necessarily everywhere defined) contraction.

Here we ask the following question: Suppose that S : [XU ] →
[X
Y
]
is a linear

operator which is scattering dissipative; i.e., it satisfies (1.4). What additional con-
ditions on S do we need in order to guarantee that S is a system node? The answer
to this question turns out to be surprisingly simple: An operator S is a scattering
passive system node if and only if S is closed and maximal within the class of all
scattering dissipative operators [XU ] →

[X
Y
]
. This means that every closed maximal

scattering dissipative operator has all the properties of a scattering passive system
node (see, for example, [Sta05, Definition 4.7.2 and Lemma 4.7.3] for partial lists
of these properties). Also note that, in the absense of external inputs and outputs,
the above condition is identical to the standard condition which characterizes the
class of operators which generate contraction semigroups on Hilbert spaces.

2. Scattering dissipative operators

Throughout the rest of this article we fix three Hilbert spaces, U , X , and Y . We
denote the direct orthogonal sum of X and U by [XU ]. The identity operator in
X is denoted by 1X . The coordinate maps [ xu ] → x and [ xu ] → u are denoted by[
1X 0

]
and

[
0 1U

]
, respectively. The map from x ∈ X to [ Ax

Cx ] ∈ [XU ] is denoted

by [ AC ].
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Definition 2.1. Let S : [XU ] →
[X
Y
]
be a linear operator with domain D(S).

(i) S is called scattering dissipative if it satisfies (1.4).
(ii) S is called maximal scattering dissipative if, in addition, S has no proper

scattering dissipative extension.

Lemma 2.2. Let S be scattering dissipative and define E : [XU ] →
[X
Y
]
by

(2.1) E =

[ 1√
2
1X 0

0 1U

]
−
[ 1√

2

[
1X 0

]
S

0

]
, D(E) = D(S).

Let [ xu ] ∈ D(S) = D(E), and denote
[
ẋ
y

]
= S [ xu ], x0 =

[
1X 0

]
E [ xu ]. Then

(2.2) 2‖x0‖2X + ‖u‖2U ≥ ‖x‖2X + ‖ẋ‖2X + ‖y‖2Y .
Therefore E is injective, and E is closed if and only if R(E) is closed.

Proof. The inequality (2.2) follows from the fact that

2‖x0‖2 = ‖x− ẋ‖2X = ‖x‖2X + ‖ẋ‖2X − 2�〈ẋ, x〉X
≥ ‖x‖2X + ‖ẋ‖2X + ‖y‖2Y − ‖u‖2U ,

where we have used the scattering dissipativity of S. Clearly (2.2) implies that E
has a bounded inverse E−1 defined on R(E). In particular, E is injective, and E
is closed if and only if R(E) is closed. �

Let S be scattering dissipative, define E as in (2.1), and define T : [XU ] →
[X
Y
]

by

(2.3) T =

[
−1X 0
0 0

]
+

([√
2 1X 0
0 0

]
+

[
0[

0 1Y
]
S

])
E−1, D(T) = R(E).

The easiest way to describe this transformation is to observe that if [ xu ] ∈ D(S)

and S [ xu ] =
[
ẋ
y

]
, then

[
1√
2
(x−ẋ)
u

]
∈ D(T) and T

[
1√
2
(x−ẋ)
u

]
=

[
1√
2
(x+ẋ)
y

]
; and

conversely, if [ x0
u ] ∈ D(T) and T [ x0

u ] = [ x1
y ], then

[
1√
2
(x0+x1)
u

]
∈ D(S) and

T
[

1√
2
(x0+x1)
u

]
=

[
1√
2
(x0−x1)
y

]
. In particular, these formulas show that S can be

recovered from T by the formula

(2.4)

F =

[ 1√
2
1X 0

0 1U

]
+

[ 1√
2

[
1X 0

]
T

0

]
, D(F ) = D(T),

S =

[
1X 0
0 0

]
+

([
−
√
2 1X 0
0 0

]
+

[
0[

0 1Y
]
T

])
F−1, D(S) = R(F ),

where F = E−1. As in [Sta05] and [SW12], we call T the internal Cayley transform
of S, and S the inverse internal Cayley transform of T. We remark that if U = Y =
{0}, then E = 1√

2
(1X −S), T = (1X +S)(1X −S)−1, and S = (T−1X )(T+1X )−1;

i.e., T is the standard Cayley transform of S. If instead X = {0}, then E = 1U
and T = S.

Some of the properties of the internal Cayley transform are listed in the following
theorem.

Theorem 2.3.

(i) If S is scattering dissipative, then the internal Cayley transform T of S
is contractive (on its domain), and the operator 1X +

[
1X 0

]
T
[
1X
0

]
is

injective.
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(ii) Conversely, if T : [XU ] →
[X
Y
]

is contractive and the operator 1X+[
1X 0

]
T
[
1X
0

]
is injective, then the inverse internal Cayley transform

S of T is well-defined through formulas (2.4), S is scattering dissipative,
and T is the internal Cayley transform of S.

(iii) An operator S1 is a proper scattering dissipative extension of S if and only
if the internal Cayley transform T1 is a proper contractive extension of
the Cayley transform T of S with the property that 1X +

[
1X 0

]
T1

[
1X
0

]
is injective.

(iv) If S and T are related as above and E is defined by (2.1), then the following
conditions are equivalent:
(a) S is closed;
(b) T is closed;
(c) D(T) is closed;
(d) E is closed;
(e) R(E) is closed.

Proof of (i). Let [ xu ] ∈ dom (S), and let [ x0
u0

] = E [ xu ]. Then u0 = u, and [ x0
u0

] ∈
dom (T). Alternatively, we could have started with an arbitrary vector [ x0

u0
] ∈

dom (T) and defined [ xu ] = E−1 [ x0
u0

], and the relationships between the vectors x,
u, x0, and u0 would still be the same. Let

[
ẋ
y

]
= S [ xu ] and [ x1

y1 ] = T [ x0
u0

]. Then

x0 = 1√
2
(x− ẋ), u0 = u, x0 = 1√

2
(x− ẋ), y1 = y,

and

‖x1‖2X + ‖y‖2Y = 1
2‖x+ ẋ‖2X + ‖y‖2Y = 1

2‖x− ẋ‖2X + 2�〈ẋ, x〉X + ‖y‖2Y
≤ 1

2‖x− ẋ‖2X + ‖u‖2U = ‖x0‖2X + ‖u‖2U ,

where we have used the scattering dissipativity of S. Thus T is contractive (on its
domain).

To see that 1X+
[
1X 0

]
T
[
1X
0

]
is injective we take (still with the same notation)

u = 0 and x1 + x0 = 0. Since x1 + x0 = 1√
2
(x+ ẋ) + 1√

2
(x− ẋ) =

√
2x, we get x =

0, and hence 1X +
[
1X 0

]
T
[
1X
0

]
is injective.

Proof of (ii). It is easy to see that the operator F defined in (2.4) is injective if
and only if 1X +

[
1X 0

]
T
[
1X
0

]
is injective. Thus, the second half of (2.4) defines

an operator S on R(F ) whenever 1X +
[
1X 0

]
T
[
1X
0

]
. A computation analogous

to the one above shows that S is scattering dissipative, and it is easy to check that
the internal Cayley transform of S is T.

Proof of (iii). This follows from (i) and (ii).
Proof of (iv). By Lemma 2.2, (d) ⇔ (e). Since T is a contraction and D(T) =

R(E), we have (c) ⇔ (e), and since T(α) is a contraction we have (b) ⇔ (c).
Finally, (a) ⇔ (b) since the graph of S is mapped onto the graph of T by the
boundedly invertible operator

⎡
⎢⎢⎣

1√
2
1X 0 − 1√

2
1X 0

0 1U 0 0
1√
2
1X 0 1√

2
1X 0

0 0 0 1Y

⎤
⎥⎥⎦ . �
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Theorem 2.4. If S is maximal scattering dissipative, then the following conditions
are equivalent:

(i) S is closable.
(ii) S is closed.
(iii) The domain of the internal Cayley transform T of S is equal to [XU ].
(iv) D(S) ∩ [X0 ] is dense in [X0 ].

Proof of (i) ⇔ (ii). If S is closable, then it is easy to see that also the closure of S
is a scattering dissipative operator. Thus, (i) ⇔ (ii).

Proof of (ii) ⇔ (iii). Clearly, if (iii) holds, then T is closed, and by Theorem 2.3,
also S is closed. Conversely, suppose that S is closed. Then by Theorem 2.3,
D(T) = D(E) is closed. If D(T) �= [XU ], then we can extend T to a contraction

T1 defined on all of [XU ] by taking T [ x0
u ] = 0 for all [ x0

u ] ∈ D(T)⊥. Since 1X +[
1X 0

]
T
[
1X
0

]
is injective, also 1X+

[
1X 0

]
T1

[
1X
0

]
is injective. By Theorem 2.3,

the inverse internal Cayley transform S1 ofT1 is then a proper scattering dissipative
extension of S, and consequently, S cannot be maximal scattering dissipative. Thus
(ii) ⇔ (iii).

Proof of (iii) ⇒ (iv). Suppose that D(T) = [XU ]. If D(S) ∩ [X0 ] is not dense
in [X0 ], then it follows from (2.4) that R(1X + A) is not dense in X, where A =[
1X 0

]
T
[
1X
0

]
. Equivalently, 1X + A∗ is not injective. Thus, there exists some

nonzero x0 ∈ X such that x0 +A∗x0 = 0, i.e., A∗x0 = −x0. Therefore

0 = ‖x0‖2X − ‖A∗x0‖2X = 〈x0, 1X −AA∗)x0〉X = ‖(1X −AA∗)1/2x0‖2X .

Thus (1X −AA∗)1/2x0 = 0, and hence also (1X −AA∗)x0 = 0, i.e., AA∗x0 = x0.
Here A∗x0 = x0, which gives Ax0 = −x0, i.e., x0 +Ax0 = 0. But this contradicts
the fact that, by Theorem 2.3, 1X +A is injective. This shows that (iii) ⇒ (iv).

Proof of (iv) ⇒ (iii). If D(S)∩[X0 ] is dense in [X0 ], then it follows from (2.4) that
R(1X + A) is dense in X, where A =

[
1X 0

]
T
[
1X
0

]
. Since A is a contraction,

this implies that 1X +A is injective, which can be seen as follows (this argument
is reproduced from [Phi59, p. 200]). Suppose that x0 +Ax0 = 0, i.e., Ax0 = −x0,
let x1 ∈ D(A), and set x2 = x1 +Ax1. Then for all α ∈ C,

‖A(x1 − αx0)‖2X ≤ ‖x1 − αx0‖2X ,

which reduces to

α〈x0, x2〉X + α〈x2, x0〉X ≤ ‖x1‖2X − ‖Ax1‖2X .

Since α is arbitrary, it follows that 〈x0, x2〉X = 0 and by assumption this must hold
for a dense set of x2. Consequently, x0 = 0, and this proves that 1X +A is injective.

IfT is not everywhere defined, thenT can be properly extended to an everywhere
defined contraction T1. The main operator A1 = PXT1

[
1X
0

]
of T is an extension

of A, and hence R(1X +A1) is dense in X . By the same argument that we gave
above, 1X +A1 is injective. Let S1 be the inverse internal Cayley transform of T1.
Then S1 is a proper scattering dissipative extension of S, which contradicts the
assumption that S is maximal scattering dissipative. Thus, the assumption that T
is not everywhere defined resulted in a contradiction, and we conclude that (iv) ⇒
(iii). �

An example of a maximal dissipative operator (with U = Y = {0}) which does
not satisfy the equivalent conditions in Theorem 2.4 is given in [Phi59, p. 201].
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Theorem 2.5. A linear operator S : [XU ] →
[X
Y
]
is a scattering passive system

node if and only if it is closed and maximal scattering dissipative.

We remark that according to Theorem 2.4, this result remains true if we replace
the requirement that S is closed by the requirement that the domain of the main
operator A of S (see Definition 1.1) is dense in X .

Proof of Theorem 2.5. If S is a scattering passive system node, then by [Sta05,
Theorem 11.1.5], S is closed and scattering dissipative, and the internal Cayley
transform T of S is a contraction with domain D(T) = [XU ]. Thus T has no proper
(operator) extension, and by Theorem 2.3, S does not have any proper scattering
dissipative extension. Thus, S is maximal scattering dissipative.

Conversely, suppose that S is closed and maximal scattering dissipative. Then
by Theorem 2.4, the internal Cayley transform T of S is a contraction with domain
D(T) = [XU ]. By [SW12, Proposition 4.3], S is a scattering passive system node. �

3. An example

Theorem 2.5 can be used to give a very short proof of the following result (which
is essentially a particular case of the main result of [SW10]).

Proposition 3.1. Let U , X , and Y be Hilbert spaces, let S be a linear operator
[XU ] →

[X
Y
]
, and let P be a positive selfadjoint and boundedly invertible operator in

X . Define

SP =

[
P 0
0 1Y

]
S

[
P 0
0 1U

]
, D

(
SP

)
=

[
P−1 0
0 1U

]
D(S).

Then S is a scattering passive system node if and only if SP is a scattering passive
system node.

Proof. Clearly, it suffices to prove this proposition in one direction, since the other
direction then follows if we interchange S and SP and also replace P by P−1.

Suppose that S is scattering passive, i.e., that S is closed and maximal scattering
dissipative. Let [ xP

u ] ∈ dom (SP ) and denote
[
ẋP
y

]
:= SP [ xP

u ]. Let x = PxP and

ẋ = P−1ẋP . Then [ xu ] ∈ dom (S) and
[
ẋ
y

]
= S [ xu ]. Consequently,

0 ≤ 2�〈ẋ, x〉+ ‖y‖2Y − ‖u‖2U = 2�〈P−1ẋP , PxP 〉+ ‖y‖2Y − ‖u‖2U
= 2�〈ẋP , xP 〉+ ‖y‖2Y − ‖u‖2U .

This shows that SP is scattering dissipative. It is also easy to see that SP is closed
(since S is closed) and maximal scattering dissipative (since S is maximal scattering
dissipative). Thus, by Theorem 2.5, SP is a scattering passive system node. �
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